Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | "Liberini, Federica" <F.Liberini@warwick.ac.uk> |
To | <statalist@hsphsun2.harvard.edu> |
Subject | st: on GLLAMM and geqs |
Date | Sun, 5 Jun 2011 18:15:22 +0100 |
Dear All, I am sorry to post this question for the second time, but I am really struggling in finding an answer in the literature, so I am hoping some of you could help me. I have a probit model with a random coefficient whose equation specifies it depends also on a dummy variable. So the model looks like Pr(y_it=1|...)=b_i *x_it '+c_i+u_it b_i=d_0+d1*z1_i+ d2*z2_i+v_i c_i=c_0+eta_i What I am confused about is the right syntax of GLLAMM. I cannot understand the difference between these two options: 1) eq rcoef: x eq unhet: cons eq f1: z1 z2 gllamm y x, i(id) nrf(2) eqs(rcoef unhet) geqs(f1) fam(binom) link(probit) adapt 2) gen intz1=z1*x gen intz2=z2*x eq rcoef: x eq unhet: cons gllamm y x intz1 intz2, i(id) nrf(2) eqs(rcoef unhet) fam(binom) link(probit) adapt My understanding is that 1) and 2) should be equivalent, because the reduced form from the above model is Pr(y_it=1|...)=( d_0+d1*z1_i+ d2*z2_i+v_i )*x_it '+(c_0+eta_i)+u_it But I estimated them both and the results are slightly different: 1) gives me log likelihood = -4361.527 ------------------------------------------------------------------------ ------ choice | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------- ------ x | .408114 .2604192 1.57 0.117 -.1022982 .9185262 (omitted results) ------------------------------------------------------------------------ ------ Variances and covariances of random effects ------------------------------------------------------------------------ ------ ***level 2 (id) var(1): .06501391 (.06267917) cov(2,1): .14149909 (.04572574) cor(2,1): .83115205 var(2): .44580001 (.06440883) Regressions of latent variables on covariates ------------------------------------------------------------------------ ------ random effect 1 has 2 covariates: z1: -.4020625 (.24564924) z2: -.45827059 (.24602441) ------------------------------------------------------------------------ ------ Whereas 2) gives me log likelihood = -4361.5402 ------------------------------------------------------------------------ ------ choice | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------- ------ x | .413023 .2600095 1.59 0.112 -.0965862 .9226323 intz1 | -.4050433 .2456187 -1.65 0.099 -.8864472 .0763606 intz2 | -.4603647 .2461742 -1.87 0.061 -.9428572 .0221278 (omitted results) ------------------------------------------------------------------------ ------ Variances and covariances of random effects ------------------------------------------------------------------------ ------ ***level 2 (id) var(1): .07086448 (.06422002) cov(2,1): .13851655 (.04482402) cor(2,1): .77885924 var(2): .44633071 (.06433206) ------------------------------------------------------------------------ ------ They are very very similar, but they are not the same. Anyone knows why? (it is useful to know especially because the estimation with syntax as in 2) allows me to save a lot of computation time) Many thanks for your help Best Federica * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/