Statalist


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: st: survival


From   Steven Samuels <[email protected]>
To   [email protected]
Subject   Re: st: survival
Date   Fri, 2 Jan 2009 10:37:54 -0500

Sebastián

Your set-up implies that people were randomly selected within strata. In most complex surveys the first unit selected is a primary sampling unit which contains many people. If there is such a variable in the data (e.g. psu_var), then the -svyset- command would go:

svyset psu_var [pw =exp] strata(estrato)

If indeed people were randomly selected at the first stage, then I would expect, as you found, that the standard errors for -logit- and for -svy: logit- would be very close.

-Steven

On Jan 2, 2009, at 7:52 AM, Sebastián Daza wrote:

Hi Steven,
In fact, I created a new observation for each person and period. I
have used svy: logit and plain logit, but there aren't differences
between results. Sampling desing is stratified and in person-level
data (not expanded) each person have a weight (inverse of the
probability that the observation is included in strata). I keep this
factor with the expanded person-period dataset.

svyset _n [pw=exp], strata(estrato)
svy: logit nevent  d4-d18 sex, nocons

(running logit on estimation sample)

Survey: Logistic regression

Number of strata = 34 Number of obs = 16098 Number of PSUs = 16098 Population size = 50866.46 Design df = 16064 F( 16, 16049) = 210.37 Prob > F = 0.0000

---------------------------------------------------------------------- --------
             |             Linearized
nevent | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------- +---------------------------------------------------------------- d4 | -8.328679 1.000458 -8.32 0.000 -10.28969 -6.367669 d5 | -7.196868 .5784475 -12.44 0.000 -8.33069 -6.063046 d6 | -6.457124 .8443208 -7.65 0.000 -8.112087 -4.80216 d7 | -5.112672 .3778669 -13.53 0.000 -5.853334 -4.372011 d8 | -4.454505 .2654388 -16.78 0.000 -4.974795 -3.934216 d9 | -4.36023 .2578381 -16.91 0.000 -4.865621 -3.854838 d10 | -2.906085 .1389361 -20.92 0.000 -3.178415 -2.633755 d11 | -3.376975 .1718178 -19.65 0.000 -3.713757 -3.040192 d12 | -2.344076 .1135556 -20.64 0.000 -2.566658 -2.121495 d13 | -2.003841 .1034748 -19.37 0.000 -2.206663 -1.801019 d14 | -1.533507 .1007537 -15.22 0.000 -1.730995 -1.336018 d15 | -1.20536 .1039184 -11.60 0.000 -1.409051 -1.001668 d16 | -1.09949 .1303548 -8.43 0.000 -1.355 -.8439799 d17 | -1.283726 .2046521 -6.27 0.000 -1.684867 -.8825846 d18 | -3.116538 1.02575 -3.04 0.002 -5.127122 -1.105953 sex | -.6876329 .1434859 -4.79 0.000 -. 9688814 -.4063845 ---------------------------------------------------------------------- --------


plain logit

. logit nevent d4-d18 sex [pw=exp], nolog nocons
(sum of wgt is   5.0866e+04)

Logistic regression Number of obs = 16098 Wald chi2(16) = 3351.56 Log pseudolikelihood = -2734.8293 Prob > chi2 = 0.0000

---------------------------------------------------------------------- --------
             |               Robust
nevent | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------- +---------------------------------------------------------------- d4 | -8.328679 1.000511 -8.32 0.000 -10.28964 -6.367714 d5 | -7.196868 .5785008 -12.44 0.000 -8.330709 -6.063027 d6 | -6.457124 .8442876 -7.65 0.000 -8.111897 -4.80235 d7 | -5.112672 .3779941 -13.53 0.000 -5.853527 -4.371817 d8 | -4.454505 .2654323 -16.78 0.000 -4.974743 -3.934268 d9 | -4.36023 .2578938 -16.91 0.000 -4.865692 -3.854767 d10 | -2.906085 .1389697 -20.91 0.000 -3.178461 -2.63371 d11 | -3.376975 .1718226 -19.65 0.000 -3.713741 -3.040208 d12 | -2.344076 .1135966 -20.64 0.000 -2.566721 -2.121431 d13 | -2.003841 .1035396 -19.35 0.000 -2.206775 -1.800907 d14 | -1.533507 .1007861 -15.22 0.000 -1.731044 -1.335969 d15 | -1.20536 .1040183 -11.59 0.000 -1.409232 -1.001487 d16 | -1.09949 .1303473 -8.44 0.000 -1.354966 -.844014 d17 | -1.283726 .2046078 -6.27 0.000 -1.68475 -.8827017 d18 | -3.116538 1.025502 -3.04 0.002 -5.126485 -1.10659 sex | -.6876329 .1436219 -4.79 0.000 -. 9691267 -.4061391 ---------------------------------------------------------------------- --------


When I computed plain logit I can compute deviance, BIC and AIC
without problem, it don't happen when I use svy logit. In this case,
are this methods equivalent?
Thanks for all you responses in advance.

Regards, Sebastián



Sebastián,
Without more information, I cannot tell whether your survival setup is correct. With logistic regression, one has to create a new observation for each person and period. I think that this is what you have done. However, with a complex sample design you should -svyset- your data and use -svy: logistic-, not plain - logistic-. This will compute standard errors appropriate to the design. You might also try -gllamm-, which will accept PSU's and - pweights- and will fit a model with added heterogeneity.


With the expanded person-period setup, -svy: cloglog- will fit a grouped proportional hazards model. Download Stephen Jenkins's - hshaz- from SSC and see the references in the -help-.

-Steven

On Dec 31, 2008, at 1:13 PM, Sebastián Daza wrote:


I'm working with a discrete-time survival model, and I have doubts
about how to use weight (pweights) in a person-period data. I did the
following:

logit  nevent  d4-d18 [pw=exp], nolog nocons

Is it correct?
exp is sampling weight, inverse of the probability that the
observation is included because of the sampling design. When I use
pweights I have problem with lrtest too, because I have to "force" the
process.


*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



--

Sebastián Daza Aranzaes
(56 2) 8 921 04 60 / (56 2) 28 307 45
[email protected]




--
Sebastián Daza Aranzaes
Sociólogo UC
[email protected]

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index