Title | Pseudo-R2 for probit | |
Author | William Gould, StataCorp |
I estimated a random-effects probit model using xtprobit. A referee asks for a goodness-of-fit measure (some pseudo-R2, or so). Although I do not see what we can learn from reporting such a number [...], I consider the damage from including it into the table of results to be minimal compared to the damage from trying to convince the referee. Anyway, I cannot find a goodness-of-fit measure in my output. [...] Where is the pseudo-R2 for xtprobit, or how can I calculate the number from information given in the output?
xtprobit is one of those models for which the log likelihood would be zero if the fit were perfect, so we can just scale the log-likelihood value of your model so that 1 corresponds to a log likelihood of 0 and 0 corresponds to the log likelihood of the constant-only model.
We can get the log likelihood of the constant-only model by typing
So let’s pretend that
LL_o = −35.670226 (constant-only model) LL_f = −25.767073 (full model) LL_p = 0.0 (perfect model)
All we need to do is scale the above so LL_0 corresponds to 0 and LL_p corresponds to 1.
Pseudo R2 = (35.670226 − 25.767073)/35.670226 = .2776
You can see the Methods and Formulas for [R] maximize for a justification of the above formula.
Not too much strikes me wrong with the above, and I recommend you use it. If I were asked to criticize the above, I would point out that the perfect model leaves no room for a random effect (the random effect must be zero), and so perhaps the pseudo-R2 value calculated is too low in some sense. This does not really bother me; you are just looking for a value to reflect, in some vague sense, how well you have fit the data, and the above calculation certainly does so in a reasonable way.
Be careful when obtaining the log likelihood for the constant-only model that you fit the model on the same estimation subsample on which you fitted the full model. Remember, Stata drops observations in which variables have missing values and, in the constant-only model, you are not specifying those variables. Probably the safest thing to do is refit the full model and then fit the constant-only model if e(sample).
Learn
Free webinars
NetCourses
Classroom and web training
Organizational training
Video tutorials
Third-party courses
Web resources
Teaching with Stata
© Copyright 1996–2025 StataCorp LLC. All rights reserved.
×
We use cookies to ensure that we give you the best experience on our website—to enhance site navigation, to analyze usage, and to assist in our marketing efforts. By continuing to use our site, you consent to the storing of cookies on your device and agree to delivery of content, including web fonts and JavaScript, from third party web services.
Cookie Settings
Last updated: 16 November 2022
StataCorp LLC (StataCorp) strives to provide our users with exceptional products and services. To do so, we must collect personal information from you. This information is necessary to conduct business with our existing and potential customers. We collect and use this information only where we may legally do so. This policy explains what personal information we collect, how we use it, and what rights you have to that information.
These cookies are essential for our website to function and do not store any personally identifiable information. These cookies cannot be disabled.
This website uses cookies to provide you with a better user experience. A cookie is a small piece of data our website stores on a site visitor's hard drive and accesses each time you visit so we can improve your access to our site, better understand how you use our site, and serve you content that may be of interest to you. For instance, we store a cookie when you log in to our shopping cart so that we can maintain your shopping cart should you not complete checkout. These cookies do not directly store your personal information, but they do support the ability to uniquely identify your internet browser and device.
Please note: Clearing your browser cookies at any time will undo preferences saved here. The option selected here will apply only to the device you are currently using.