Title | Saving stats (means, standard deviations, etc.) into a dataset or matrices | |
Author | Ronna Cong, StataCorp |
collapse converts the data in memory into a dataset of means, medians, etc.
Example using collapse:
. use auto, clear (1978 Automobile Data) . by foreign: sum price mpg weight [aweight=rep78] _______________________________________________________________________________ -> foreign = Domestic Variable | Obs Weight Mean Std. Dev. Min Max -------------+----------------------------------------------------------------- price | 48 145.0000 6162.517 3106.007 3291 15906 mpg | 48 145.0000 19.8 5.205471 12 34 weight | 48 145.0000 3347.862 740.8696 1800 4840 _______________________________________________________________________________ -> foreign = Foreign Variable | Obs Weight Mean Std. Dev. Min Max -------------+----------------------------------------------------------------- price | 21 90.0000 6133.778 2286.096 3748 11995 mpg | 21 90.0000 25.45556 6.719655 17 41 weight | 21 90.0000 2285.778 371.6942 1760 3170 . collapse (mean) price_mean = price (median) mpg_med = mpg (sd) weight_sd = weight [aweight=rep], by(foreign) . list +------------------------------------------+ | foreign price_~n mpg_med weight~d | |------------------------------------------| 1. | Domestic 6,162.5 19 740.87 | 2. | Foreign 6,133.8 25 371.694 | +------------------------------------------+
matrix accum, with the means() and deviations options, can be used to obtain means matrices and covariance matrices.
Example using matrix accum:
. use auto, clear (1978 Automobile Data) . correlate price mpg weight [aweight=rep78], means cov (sum of wgt is 2.3500e+02) (obs=69) Variable | Mean Std. Dev. Min Max -------------+---------------------------------------------------- price | 6,151.51 2,801.56 3,291 15,906 mpg | 21.96596 6.402573 12 41 weight | 2,941.11 811.2383 1,760 4,840 | price mpg weight -------------+--------------------------- price | 7.8e+06 mpg | -8225.94 40.9929 weight | 1.2e+06 -4123.77 658108 . mat accum Cov = price mpg weight [aweight=rep78], noc means(M) deviations (sum of wgt is 2.3500e+02) (obs=69) . mat list M M[1,3] price mpg weight _cons 6151.5106 21.965957 2941.1064 . mat Cov = Cov/(r(N)-1) . mat list Cov symmetric Cov[3,3] price mpg weight price 7848734.6 mpg -8225.9352 40.992942 weight 1222727.7 -4123.7697 658107.63