Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | "Joseph Coveney" <stajc2@gmail.com> |
To | <statalist@hsphsun2.harvard.edu> |
Subject | st: Re: ANOVA |
Date | Fri, 7 Mar 2014 09:56:49 +0900 |
Wendy Alfaro wrote: I need to run and Anova with these data. How do I perform the test with Stata? Dureza primer mordisco Tratamiento (Sust. Huevo)% Muestra 1 Muestra 2 Muestra 3 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 100% 29,7562 35,0566 32,8892 19,9594 28,9730 22,3698 37,4985 31,2923 31,8955 75% 22,3752 27,6344 30,8096 22,0975 22,4783 28,2321 27,9858 25,2717 21,7764 50% 25,9648 29,3983 26.9672 30,4386 27,0703 31,4941 43,7090 62,9589 44,2992 0% 24,8714 24,0784 28,6552 33,1658 33,7440 33,9544 20,8814 24,6869 19,3974 I need to run and Anova with these data. How do I perform the test with Stata? Dureza segundo mordisco Tratamiento (Sust. Huevo)% Muestra 1 Muestra 2 Muestra 3 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 100% 20,0689 25,8021 21,6245 15,8371 21,7363 17,6238 29,5198 25,1263 25,4528 75% 15,3175 19,0080 22,3080 17,3005 19,1132 20,8489 23,4535 21,6940 19,2889 50% 18,8561 22,0628 19,1392 22,9024 21,7797 26,4107 34,7594 50,0161 36,8400 0% 19,5395 17,8472 23,7215 28,3482 27,5487 28,6693 18,2164 20,9888 16,1398 Dureza, pico negativo de elasticidad del primer pico Tratamiento (Sust. Huevo)% Muestra 1 Muestra 2 Muestra 3 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 100% -0,0409 -0,0499 -0,1909 -0,0835 -0,1052 -0,0282 -0,1182 -0,1367 -0,0488 75% -0,0824 -0,1410 -0,0184 -0,0846 -0,0239 -0,0998 0,0033 -0,0759 0,0141 50% -0,0358 -0,0955 -0,0108 -0,0054 -0,0184 0,0011 -0,0098 -0,0749 -0,0098 0% -0,0228 -0,0152 -0,0011 -0,0033 -0,0521 0 -0,0054 0,0087 0 Dureza, pico negativo de elasticidad del segundo pico Tratamiento (Sust. Huevo)% Muestra 1 Muestra 2 Muestra 3 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 100% -0,1258 -0,0911 -0,0949 -0,0879 -0,0868 -0,0358 -0,1345 -0,0868 -0,1009 75% -0,0683 -0,0087 -0,0477 -0,0792 -0,0184 -0,1041 -0,0759 -0,0694 -0,0629 50% -0,0250 -0,1041 -0,0065 0 -0,0022 -0,0597 -0,0477 -0,0239 -0,0184 0% -0,0011 -0,0119 -0,0466 -0,0553 0,0499 -0,0510 0,0065 -0,0304 -0,0108 -------------------------------------------------------------------------------- Try something like that below. I show the MANCOVA table beneath the do-file. I have no idea what your study is all about (for example, for the sake of data input, es. mordisco => Eng. bite), or whether the pair of paired datasets is supposed to represent two outcome variables for common explanatory variables. But MANCOVA is always more fun to me than ANOVA, so that's how I set it up. Joseph Coveney clear * set more off // Nota bene: "hard-coded" correction of data-entry error: 26.9672 -> 26,9672 quietly input str244 a1-a30 100% 29,7562 35,0566 32,8892 19,9594 28,9730 22,3698 37,4985 31,2923 31,8955 75% 22,3752 27,6344 30,8096 22,0975 22,4783 28,2321 27,9858 25,2717 21,7764 50% 25,9648 29,3983 26,9672 30,4386 27,0703 31,4941 43,7090 62,9589 44,2992 0% 24,8714 24,0784 28,6552 33,1658 33,7440 33,9544 20,8814 24,6869 19,3974 end generate byte bite = 1 tempfile tmpfil0 quietly save `tmpfil0' drop _all quietly input str244 a1-a30 100% 20,0689 25,8021 21,6245 15,8371 21,7363 17,6238 29,5198 25,1263 25,4528 75% 15,3175 19,0080 22,3080 17,3005 19,1132 20,8489 23,4535 21,6940 19,2889 50% 18,8561 22,0628 19,1392 22,9024 21,7797 26,4107 34,7594 50,0161 36,8400 0% 19,5395 17,8472 23,7215 28,3482 27,5487 28,6693 18,2164 20,9888 16,1398 end generate byte bite = 2 append using `tmpfil0' generate long h11 = real(a3 + a5) generate long h12 = real(a6 + a8) generate long h13 = real(a9 + a11) generate long h21 = real(a12 + a14) generate long h22 = real(a15 + a17) generate long h23 = real(a18 + a20) generate long h31 = real(a21 + a23) generate long h32 = real(a24 + a26) generate long h33 = real(a27 + a29) destring a1, generate(trt) drop a* quietly save `tmpfil0', replace drop _all // Nota bene: "hard-coded" correction of data format inconsistency quietly input str244 a1-a30 100% -0,0409 -0,0499 -0,1909 -0,0835 -0,1052 -0,0282 -0,1182 -0,1367 -0,0488 75% -0,0824 -0,1410 -0,0184 -0,0846 -0,0239 -0,0998 0,0033 -0,0759 0,0141 50% -0,0358 -0,0955 -0,0108 -0,0054 -0,0184 0,0011 -0,0098 -0,0749 -0,0098 0% -0,0228 -0,0152 -0,0011 -0,0033 -0,0521 0,0000 -0,0054 0,0087 0,0000 end generate byte bite = 1 tempfile tmpfil1 quietly save `tmpfil1' drop _all // Nota bene: "hard-coded" correction of data format inconsistency quietly input str244 a1-a30 100% -0,1258 -0,0911 -0,0949 -0,0879 -0,0868 -0,0358 -0,1345 -0,0868 -0,1009 75% -0,0683 -0,0087 -0,0477 -0,0792 -0,0184 -0,1041 -0,0759 -0,0694 -0,0629 50% -0,0250 -0,1041 -0,0065 0,0000 -0,0022 -0,0597 -0,0477 -0,0239 -0,0184 0% -0,0011 -0,0119 -0,0466 -0,0553 0,0499 -0,0510 0,0065 -0,0304 -0,0108 end generate byte bite = 2 append using `tmpfil1' generate long enp11 = real(a3 + a5) generate long enp12 = real(a6 + a8) generate long enp13 = real(a9 + a11) generate long enp21 = real(a12 + a14) generate long enp22 = real(a15 + a17) generate long enp23 = real(a18 + a20) generate long enp31 = real(a21 + a23) generate long enp32 = real(a24 + a26) generate long enp33 = real(a27 + a29) destring a1, generate(trt) drop a* merge 1:1 trt bite using `tmpfil0', assert(match) nogenerate noreport quietly reshape long enp1 enp2 enp3 h1 h2 h3, i(trt bite) j(reading) quietly reshape long enp h, i(trt bite reading) j(sample) rename h hard manova enp hard = trt bite trt#bite / sample|trt#bite /// reading trt#reading bite#reading trt#bite#reading exit MANCOVA table, copied and pasted from Results Window: Number of obs = 72 W = Wilks' lambda L = Lawley-Hotelling trace P = Pillai's trace R = Roy's largest root Source | Statistic df F(df1, df2) = F Prob>F -----------------+-------------------------------------------------- Model | W 0.0402 39 78.0 62.0 3.17 0.0000 e | P 1.5274 78.0 64.0 2.65 0.0000 a | L 9.7576 78.0 60.0 3.75 0.0000 a | R 7.9899 39.0 32.0 6.56 0.0000 u |-------------------------------------------------- Residual | 32 -----------------+-------------------------------------------------- trt | W 0.1393 3 6.0 30.0 8.40 0.0000 e | P 1.0668 6.0 32.0 6.10 0.0002 a | L 4.7005 6.0 28.0 10.97 0.0000 a | R 4.3612 3.0 16.0 23.26 0.0000 u |-------------------------------------------------- bite | W 0.7214 1 2.0 15.0 2.90 0.0864 e | P 0.2786 2.0 15.0 2.90 0.0864 e | L 0.3861 2.0 15.0 2.90 0.0864 e | R 0.3861 2.0 15.0 2.90 0.0864 e |-------------------------------------------------- trt#bite | W 0.9862 3 6.0 30.0 0.03 0.9998 e | P 0.0139 6.0 32.0 0.04 0.9997 a | L 0.0140 6.0 28.0 0.03 0.9998 a | R 0.0121 3.0 16.0 0.06 0.9779 u |-------------------------------------------------- sample|trt#bite | 16 -----------------+-------------------------------------------------- reading | W 0.8531 2 4.0 62.0 1.28 0.2869 e | P 0.1493 4.0 64.0 1.29 0.2831 a | L 0.1694 4.0 60.0 1.27 0.2915 a | R 0.1510 2.0 32.0 2.42 0.1053 u |-------------------------------------------------- trt#reading | W 0.8122 6 12.0 62.0 0.57 0.8607 e | P 0.1917 12.0 64.0 0.57 0.8616 a | L 0.2264 12.0 60.0 0.57 0.8606 a | R 0.2025 6.0 32.0 1.08 0.3950 u |-------------------------------------------------- bite#reading | W 0.8767 2 4.0 62.0 1.05 0.3868 e | P 0.1233 4.0 64.0 1.05 0.3880 a | L 0.1406 4.0 60.0 1.05 0.3868 a | R 0.1406 2.0 32.0 2.25 0.1218 u |-------------------------------------------------- trt#bite#reading | W 0.9159 6 12.0 62.0 0.23 0.9960 e | P 0.0846 12.0 64.0 0.24 0.9957 a | L 0.0914 12.0 60.0 0.23 0.9962 a | R 0.0859 6.0 32.0 0.46 0.8339 u |-------------------------------------------------- Residual | 32 -----------------+-------------------------------------------------- Total | 71 -------------------------------------------------------------------- e = exact, a = approximate, u = upper bound on F . . exit end of do-file * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/faqs/resources/statalist-faq/ * http://www.ats.ucla.edu/stat/stata/