Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: st: Need help with ordinal reliability --> not anymore


From   Marta Garcia-Granero <[email protected]>
To   [email protected]
Subject   Re: st: Need help with ordinal reliability --> not anymore
Date   Wed, 06 Nov 2013 10:39:00 +0100

A good night rest and I seem to have a brand new brain. I finally solved my problem. After perusing the help for -factormat- I realized I had to eliminate the single quotes around C:

Instead of:

polychoric das*
matrix define `C' = r(R)
factormat `C', n(915) factors(1)

I used:

polychoric das*
matrix define C = r(R)
factormat C, n(915) factors(1)

And I got my ordinal alphas.

So, this goes straight to the paper, with MANY thanks (and a citation) to Joseph Coveney.

Regards,
Marta GG

El 05/11/2013 18:49, Marta Garcia-Granero escribió:
Hi again:

I must be really tired (18:30 CET...), I didn't elaborate my question, and the information I provided was really scanty.

I'm using 64 bits Stata, v 12.1 . The author of the original code is Joseph Coveney, and there was a couple of extra lines at the bottom of my first message that should have been eliminated (alpha latent....).

Also, the output for -polychoric- was:

Polychoric correlation matrix

das1 das2 das3 das4 das5 das6 das7
 das1          1
 das2  .42024951          1
 das3  .24509033  .32364968          1
 das4  .36344476  .52974183  .29672763          1
 das5  .33015234  .50295552  .31500762  .43689823          1
 das6  .40680867  .49900034  .27843518  .69339713 .37167844          1
das7 .29380929 .32790657 .29356005 .38405985 .39296997 .33400672 1 das8 .35677412 .46419956 .40604081 .49256452 .4567259 .46454955 .53930077 das9 .37077838 .34527103 .26974445 .38840096 .36997004 .35312515 .3571874 das10 .4256425 .51589102 .33813277 .4370863 .48154865 .3910091 .4668058 das11 .37272216 .59244225 .29880755 .52523425 .43404926 .47464957 .34626293 das12 .5121788 .51715508 .32776665 .43895648 .4803188 .42322721 .46064299 das13 .37993855 .37775355 .14527508 .34385484 .34732168 .33653105 .3241444 das14 .32637852 .7394756 .24964994 .54102318 .48400845 .46558826 .28458065 das15 .43274919 .39017236 .25867438 .38537742 .40293415 .36018827 .4156234 das16 .3474 .46423544 .33881092 .48665781 .48483778 .47053561 .38825415 das17 .27212954 .32632387 .21638421 .29795486 .33135255 .30779252 .31076419 das18 .37998676 .54349127 .28253174 .56671336 .43986064 .57194078 .39590204 das19 .28731551 .37032004 .17092521 .42829171 .36295912 .42772512 .31525391 das20 .34803246 .41226741 .30207845 .50186841 .41863183 .49193995 .36804831 das21 .31516767 .46410866 .25604889 .48067802 .4013685 .41396665 .37932535 das22 .32576574 .4746789 .24764487 .52425967 .42027355 .43977791 .41068211 das23 .27030853 .37106997 .16708249 .50227817 .2928019 .47093511 .23610837 das24 .22180702 .48066541 .19659108 .46905576 .32300993 .38518647 .26956413 das25 .2485514 .41517796 .15882277 .46634462 .33945453 .38547609 .3262669 das26 .30558935 .40363268 .20375388 .55666758 .39058928 .46668209 .34172138 das27 .34826363 .45727001 .1819646 .48968223 .37207247 .392942 .32741759 das28 .30102988 .35688643 .09771854 .37671756 .26926171 .33082686 .23635546 das29 .17060376 .26941245 .15150186 .31490059 .21765541 .457789 .11360179 das30 .23004565 .40100813 .17788273 .5200932 .33359417 .51155108 .26112867 das31 .30294671 .50141191 .27341805 .60021678 .44015522 .53789039 .38973157 das32 .17851874 .28451353 .17292657 .29183327 .2629968 .25458053 .21833671

das8 das9 das10 das11 das12 das13 das14
 das8          1
 das9  .39974386          1
das10  .67476763  .43931616          1
das11  .50594364  .32861706  .52631507          1
das12  .57449347  .35833765  .67020656  .55697966          1
das13  .22995568  .30662879  .28584647  .34872446 .33847967          1
das14 .47828855 .31375469 .50503804 .60258201 .45629234 .39982639 1 das15 .44764559 .38888315 .5150241 .45929063 .59085042 .30721258 .38580768 das16 .53914135 .40808404 .548167 .48414852 .53424112 .29754421 .42090407 das17 .37858619 .27487912 .36552225 .30119579 .40823621 .22405586 .26188821 das18 .53667085 .40097699 .54474508 .54758093 .54306969 .307511 .5172758 das19 .41073243 .25659421 .44896752 .39782274 .43872791 .23747139 .35624799 das20 .50370828 .38665834 .53478484 .47388992 .53354992 .33501667 .3960891 das21 .45082815 .40043999 .41305077 .40661984 .4814231 .30269254 .41616912 das22 .49334693 .41727551 .44567218 .44527364 .51258513 .3301241 .47886932 das23 .42055161 .27078847 .35860358 .41942107 .38881377 .26157417 .39512935 das24 .40644921 .25634044 .35810732 .46382043 .37930243 .25365179 .48636124 das25 .44719107 .22144828 .43444377 .45265554 .41230003 .20935814 .42296945 das26 .4656409 .30134818 .48658089 .50974805 .48665406 .27002113 .40664821 das27 .44547295 .30125276 .46307111 .49444787 .46038074 .25635778 .43403325 das28 .33775888 .22580941 .40599368 .41224761 .38915379 .19157961 .36126268 das29 .16210088 .14310961 .16657815 .26335942 .20955204 .25445594 .26346291 das30 .32219318 .31208264 .35928233 .43881299 .3438433 .25124765 .35528767 das31 .5594746 .40275532 .53951207 .53746186 .52556581 .28186361 .489413 das32 .39308945 .20784672 .40532155 .27294979 .34535153 .15746432 .22744404

das15 das16 das17 das18 das19 das20 das21
das15          1
das16  .42843025          1
das17   .2715098  .55145526          1
das18  .40177144  .61553926  .40024254          1
das19  .33440658  .42463585  .27899256  .59261299          1
das20  .36273551  .64974173  .46385731  .63766106 .49851409          1
das21 .3495031 .54791334 .46836068 .50849809 .29701768 .44893774 1 das22 .35754035 .58076167 .43313462 .6023346 .4015379 .53049849 .75844258 das23 .22245339 .42709582 .26960073 .52450195 .47138197 .48407088 .34800332 das24 .28869687 .39769693 .23907163 .42040602 .42213481 .43759911 .36103298 das25 .30213549 .42560391 .32038514 .50009688 .54269902 .43683276 .32682595 das26 .3780645 .49861168 .32256891 .55895062 .50612039 .52789705 .3799089 das27 .33505036 .46936441 .34072844 .52474993 .51335194 .46497783 .4306266 das28 .27806576 .36007783 .21866912 .43091786 .39498232 .4013719 .29679069 das29 .14391492 .27002725 .16091784 .22858012 .16480877 .30077832 .21453991 das30 .2687126 .42673629 .3295372 .49543879 .36399201 .47287811 .38799431 das31 .37635398 .67924448 .40919612 .72687442 .54662431 .66736428 .52480879 das32 .22394362 .37040292 .25326946 .30576045 .39058949 .45059708 .18703795

das22 das23 das24 das25 das26 das27 das28
das22          1
das23  .42681021          1
das24  .41124172  .42101534          1
das25  .42970114  .45255165  .50364222          1
das26  .50953651  .57670573  .47293366  .68971886          1
das27  .50659321  .47978179  .49151468  .71981116 .70539631          1
das28 .38998676 .35492021 .46455837 .59195162 .54833839 .63541313 1 das29 .24271537 .2348952 .16562635 .20240707 .22845612 .19466781 .16714515 das30 .43590664 .42594789 .34133411 .36934575 .47968264 .415452 .27268197 das31 .62639611 .61326334 .48390416 .56170046 .6438142 .57205315 .44793834 das32 .27699136 .3621606 .26743391 .30494233 .3731506 .2863538 .28644285

           das29      das30      das31      das32
das29          1
das30   .6029357          1
das31  .33279594  .53289225          1
das32  .13314184  .22366825  .45268499          1


El 05/11/2013 18:24, Marta Garcia-Granero escribió:
I am working with a translation of the Dyadic Adjustment Scale (Spanier, 1976) in 915 cases. The scale is formed by 32 (das1...das32) categorical items, 30 are 5-point Likert and 2 of them are binary. I have been asked to get ordinal alphas for the total score and the 4 subscales (the author's got the paper in stand-by until corrected, and came to me for help, I have less than two weeks to answer all the questions asked by the reviewers) . After searching the Statalist archive I found this solution:

http://www.stata.com/statalist/archive/2012-02/msg00696.html

I can't get pass the 3rd line (-factormat- command). I get the following error:

factor estimation result not found
r(301);

My code (adapted from the Statalist thread mentioned above):

polychoric das*
matrix define `C' = r(R)
factormat `C', n(915) factors(1)

tempname L Psi
matrix define `L' = e(L)
matrix define `Psi' = e(Psi)

local p = rowsof(`L')

tempname f f2 u2
scalar define `f' = 0
scalar define `f2' = 0
scalar define `u2' = 0
forvalues i = 1/`p' {
scalar define `f' = `f' + `L'[`i', 1]
scalar define `f2' = `f2' + `L'[`i', 1] * `L'[`i', 1]
scalar define `u2' = `u2' + `Psi'[1, `i']
}
scalar define `f' = `f' / `p'
scalar define `f2' = `f2' / `p'
scalar define `u2' = `u2' / `p'

tempname pf2
scalar define `pf2' = `p' * `f' * `f'
scalar define alpha = `p' / (`p' - 1) * ///
(`pf2' - `f2') / (`pf2' + `u2')

display in smcl as text "Ordinal alpha = " as result %06.4f alpha

alpha latent*
alpha das*, std

I'd be very grateful if somebody could help me.

Thanks in advance,
Marta GG
*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/faqs/resources/statalist-faq/
*   http://www.ats.ucla.edu/stat/stata/



*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/faqs/resources/statalist-faq/
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index