Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: st: meglm
From
Alfonso Sanchez-Penalver <[email protected]>
To
"[email protected]" <[email protected]>
Subject
Re: st: meglm
Date
Wed, 16 Oct 2013 12:17:49 -0400
Hi Stas,
Thanks for your answer. If that's the reason, and I'll test it tonight running -meprobit- to see if yields the same results, then it saddens me that there is no official command in Stata to estimate a multilevel fractional response model. I was hoping I could use -meglm- instead of -xtprobit- or -meprobit- for that matter, in a similar way that we can use -glm- instead of -probit- for fractional responses.
Does anyone know of a user-written command that would allow the estimation of a multi-level mixed fractional response probit model?
Thanks,
Alfonso Sánchez-Peñalver
> On Oct 16, 2013, at 11:39 AM, Stas Kolenikov <[email protected]> wrote:
>
> If this is a fractional response, then -meglm- is probably using the
> convention of -probit- that a zero is a zero, and everything else is a
> one. The likelihood of 0 indicates exactly that. -probit- gets around
> it with a complicated heuristics of perfect prediction; -meglm- may or
> may not be doing that, and numeric integration just blurs the things
> by less-than-perfect calculation of the likelihood.
>
>
> -- Stas Kolenikov, PhD, PStat (ASA, SSC)
> -- Senior Survey Statistician, Abt SRBI
> -- Opinions stated in this email are mine only, and do not reflect the
> position of my employer
> -- http://stas.kolenikov.name
>
>
>
> On Wed, Oct 16, 2013 at 7:17 AM, Alfonso Sanchez-Penalver
> <[email protected]> wrote:
>> I forgot to mention that ysm is a fractional response variable, which is why I'm trying -meglm- instead of -meprobit-.
>>
>> Alfonso Sánchez-Peñalver
>>
>>> On Oct 16, 2013, at 8:00 AM, Alfonso S <[email protected]> wrote:
>>>
>>> Hi,
>>>
>>> I am trying to get my head around using the -meglm- command in Stata 13 for the mac, and I must be doing something wrong. The following are the results I get when running it:
>>>
>>> ----------------------------------------------
>>> . meglm ysm ldis_totcurexpppa sch_enrlunsh lsch_enrtotal y_dum2 y_dum3 y_dum4 y_dum5 y_dum6 y_dum7 y_dum8 mldis_totcurexppp mlunch mlenrol || sprp_sch:, covariance(exchangeable) family(binomial) link(probit)
>>>
>>> Fitting fixed-effects model:
>>>
>>> Iteration 0: log likelihood = -2347.0075
>>> Iteration 1: log likelihood = 0
>>> Iteration 2: log likelihood = 0
>>>
>>> Refining starting values:
>>>
>>> Grid node 0: log likelihood = -8.835e-06
>>>
>>> Fitting full model:
>>>
>>> Iteration 0: log likelihood = -8.835e-06 (not concave)
>>> Iteration 1: log likelihood = -1.147e-12
>>> Iteration 2: log likelihood = -1.142e-12
>>>
>>> Mixed-effects GLM Number of obs = 6856
>>> Family: binomial
>>> Link: probit
>>> Group variable: sprp_sch Number of groups = 857
>>>
>>> Obs per group: min = 8
>>> avg = 8.0
>>> max = 8
>>>
>>> Integration method: mvaghermite Integration points = 7
>>>
>>> Wald chi2(0) = .
>>> Log likelihood = -1.142e-12 Prob > chi2 = .
>>> -----------------------------------------------------------------------------------
>>> ysm | Coef. Std. Err. z P>|z| [95% Conf. Interval]
>>> ------------------+----------------------------------------------------------------
>>> ldis_totcurexpppa | -.6370373 . . . . .
>>> sch_enrlunsh | 3.177517 . . . . .
>>> lsch_enrtotal | .0229953 . . . . .
>>> y_dum2 | .699251 . . . . .
>>> y_dum3 | .8369304 . . . . .
>>> y_dum4 | .7515347 . . . . .
>>> y_dum5 | .6936224 . . . . .
>>> y_dum6 | .6023263 . . . . .
>>> y_dum7 | .6499135 . . . . .
>>> y_dum8 | .6696426 . . . . .
>>> mldis_totcurexppp | .3410811 . . . . .
>>> mlunch | 6.249509 . . . . .
>>> mlenrol | .0017366 . . . . .
>>> _cons | 12.76935 . . . . .
>>> ------------------+----------------------------------------------------------------
>>> sprp_sch |
>>> var(_cons)| .5950633 . . .
>>> -----------------------------------------------------------------------------------
>>> LR test vs. probit regression: chi2(0) = 0.00 Prob > chi2 = .
>>>
>>> Note: LR test is conservative and provided only for reference.
>>> -----------------------------------------------
>>>
>>> To see that the variables were doing fine I ran the -xtgee- estimation and got normal results
>>> -----------------------------------------------
>>>
>>> . xtgee ysm ldis_totcurexpppa sch_enrlunsh lsch_enrtotal y_dum2 y_dum3 y_dum4 y_dum5 y_dum6 y_dum7 y_dum8 mldis_totcurexppp mlunch mlenrol, family(binomial) link(probit) corr(exch)
>>>
>>> Iteration 1: tolerance = .21314375
>>> Iteration 2: tolerance = .00124994
>>> Iteration 3: tolerance = .00001481
>>> Iteration 4: tolerance = 3.957e-07
>>>
>>> GEE population-averaged model Number of obs = 6856
>>> Group variable: sprp_sch Number of groups = 857
>>> Link: probit Obs per group: min = 8
>>> Family: binomial avg = 8.0
>>> Correlation: exchangeable max = 8
>>> Wald chi2(13) = 113.63
>>> Scale parameter: 1 Prob > chi2 = 0.0000
>>>
>>> -----------------------------------------------------------------------------------
>>> ysm | Coef. Std. Err. z P>|z| [95% Conf. Interval]
>>> ------------------+----------------------------------------------------------------
>>> ldis_totcurexpppa | .2161359 .3463714 0.62 0.533 -.4627396 .8950114
>>> sch_enrlunsh | -.0725626 .2464216 -0.29 0.768 -.5555401 .4104148
>>> lsch_enrtotal | -.0349141 .1043114 -0.33 0.738 -.2393606 .1695323
>>> y_dum2 | -.1418307 .0822838 -1.72 0.085 -.3031039 .0194425
>>> y_dum3 | -.2154219 .0750023 -2.87 0.004 -.3624236 -.0684201
>>> y_dum4 | -.1581733 .0651644 -2.43 0.015 -.2858932 -.0304533
>>> y_dum5 | -.1202846 .0596719 -2.02 0.044 -.2372394 -.0033298
>>> y_dum6 | -.0590736 .0576424 -1.02 0.305 -.1720506 .0539034
>>> y_dum7 | -.0919327 .0537733 -1.71 0.087 -.1973266 .0134611
>>> y_dum8 | -.1063621 .0504099 -2.11 0.035 -.2051636 -.0075606
>>> mldis_totcurexppp | -.0413327 .4116867 -0.10 0.920 -.8482237 .7655583
>>> mlunch | -1.001581 .2810579 -3.56 0.000 -1.552444 -.4507177
>>> mlenrol | .0000284 .0003227 0.09 0.930 -.0006039 .0006608
>>> _cons | -.3508665 2.187324 -0.16 0.873 -4.637943 3.93621
>>> -----------------------------------------------------------------------------------
>>>
>>> ---------------------------------------------------------------------------------------
>>>
>>> Can someone tell me if I am specifying the meglm command wrong? If not, why does it not reproduce the results from xtgee?
>>>
>>> Thanks,
>>>
>>> Alfonso.
>>>
>>>
>>> *
>>> * For searches and help try:
>>> * http://www.stata.com/help.cgi?search
>>> * http://www.stata.com/support/faqs/resources/statalist-faq/
>>> * http://www.ats.ucla.edu/stat/stata/
>>
>> *
>> * For searches and help try:
>> * http://www.stata.com/help.cgi?search
>> * http://www.stata.com/support/faqs/resources/statalist-faq/
>> * http://www.ats.ucla.edu/stat/stata/
>
> *
> * For searches and help try:
> * http://www.stata.com/help.cgi?search
> * http://www.stata.com/support/faqs/resources/statalist-faq/
> * http://www.ats.ucla.edu/stat/stata/
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/