Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

st: meglm


From   Alfonso S <[email protected]>
To   Stata List <[email protected]>
Subject   st: meglm
Date   Wed, 16 Oct 2013 05:00:46 -0700 (PDT)

Hi,

I am trying to get my head around using the -meglm- command in Stata 13 for the mac, and I must be doing something wrong. The following are the results I get when running it:

----------------------------------------------
. meglm ysm ldis_totcurexpppa sch_enrlunsh lsch_enrtotal y_dum2 y_dum3 y_dum4 y_dum5 y_dum6 y_dum7 y_dum8 mldis_totcurexppp mlunch mlenrol || sprp_sch:, covariance(exchangeable) family(binomial) link(probit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -2347.0075  
Iteration 1:   log likelihood =          0  
Iteration 2:   log likelihood =          0  

Refining starting values:

Grid node 0:   log likelihood = -8.835e-06

Fitting full model:

Iteration 0:   log likelihood = -8.835e-06  (not concave)
Iteration 1:   log likelihood = -1.147e-12  
Iteration 2:   log likelihood = -1.142e-12  

Mixed-effects GLM                               Number of obs      =      6856
Family:                binomial
Link:                    probit
Group variable:        sprp_sch                 Number of groups   =       857

                                                Obs per group: min =         8
                                                               avg =       8.0
                                                               max =         8

Integration method: mvaghermite                 Integration points =         7

                                                Wald chi2(0)       =         .
Log likelihood = -1.142e-12                     Prob > chi2        =         .
-----------------------------------------------------------------------------------
              ysm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
ldis_totcurexpppa |  -.6370373          .        .       .            .           .
     sch_enrlunsh |   3.177517          .        .       .            .           .
    lsch_enrtotal |   .0229953          .        .       .            .           .
           y_dum2 |    .699251          .        .       .            .           .
           y_dum3 |   .8369304          .        .       .            .           .
           y_dum4 |   .7515347          .        .       .            .           .
           y_dum5 |   .6936224          .        .       .            .           .
           y_dum6 |   .6023263          .        .       .            .           .
           y_dum7 |   .6499135          .        .       .            .           .
           y_dum8 |   .6696426          .        .       .            .           .
mldis_totcurexppp |   .3410811          .        .       .            .           .
           mlunch |   6.249509          .        .       .            .           .
          mlenrol |   .0017366          .        .       .            .           .
            _cons |   12.76935          .        .       .            .           .
------------------+----------------------------------------------------------------
sprp_sch          |
        var(_cons)|   .5950633          .                             .           .
-----------------------------------------------------------------------------------
LR test vs. probit regression:       chi2(0) =     0.00   Prob > chi2 =      .

Note: LR test is conservative and provided only for reference.
-----------------------------------------------

To see that the variables were doing fine I ran the -xtgee- estimation and got normal results
-----------------------------------------------

. xtgee ysm ldis_totcurexpppa sch_enrlunsh lsch_enrtotal y_dum2 y_dum3 y_dum4 y_dum5 y_dum6 y_dum7 y_dum8 mldis_totcurexppp mlunch mlenrol, family(binomial) link(probit) corr(exch)

Iteration 1: tolerance = .21314375
Iteration 2: tolerance = .00124994
Iteration 3: tolerance = .00001481
Iteration 4: tolerance = 3.957e-07

GEE population-averaged model                   Number of obs      =      6856
Group variable:                   sprp_sch      Number of groups   =       857
Link:                               probit      Obs per group: min =         8
Family:                           binomial                     avg =       8.0
Correlation:                  exchangeable                     max =         8
                                                Wald chi2(13)      =    113.63
Scale parameter:                         1      Prob > chi2        =    0.0000

-----------------------------------------------------------------------------------
              ysm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
ldis_totcurexpppa |   .2161359   .3463714     0.62   0.533    -.4627396    .8950114
     sch_enrlunsh |  -.0725626   .2464216    -0.29   0.768    -.5555401    .4104148
    lsch_enrtotal |  -.0349141   .1043114    -0.33   0.738    -.2393606    .1695323
           y_dum2 |  -.1418307   .0822838    -1.72   0.085    -.3031039    .0194425
           y_dum3 |  -.2154219   .0750023    -2.87   0.004    -.3624236   -.0684201
           y_dum4 |  -.1581733   .0651644    -2.43   0.015    -.2858932   -.0304533
           y_dum5 |  -.1202846   .0596719    -2.02   0.044    -.2372394   -.0033298
           y_dum6 |  -.0590736   .0576424    -1.02   0.305    -.1720506    .0539034
           y_dum7 |  -.0919327   .0537733    -1.71   0.087    -.1973266    .0134611
           y_dum8 |  -.1063621   .0504099    -2.11   0.035    -.2051636   -.0075606
mldis_totcurexppp |  -.0413327   .4116867    -0.10   0.920    -.8482237    .7655583
           mlunch |  -1.001581   .2810579    -3.56   0.000    -1.552444   -.4507177
          mlenrol |   .0000284   .0003227     0.09   0.930    -.0006039    .0006608
            _cons |  -.3508665   2.187324    -0.16   0.873    -4.637943     3.93621
-----------------------------------------------------------------------------------

---------------------------------------------------------------------------------------

Can someone tell me if I am specifying the meglm command wrong? If not, why does it not reproduce the results from xtgee?

Thanks,

Alfonso.


*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/faqs/resources/statalist-faq/
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index