Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

st: meologit and comparisons


From   Janet Hill <[email protected]>
To   "[email protected]" <[email protected]>
Subject   st: meologit and comparisons
Date   Sun, 1 Sep 2013 17:34:55 +0100 (BST)

Hello,
I have been asked to look at a dataset which consists of 3 intervention procedures, each subject has one of the interventions and they are then measured at 3 time periods, the independent variable is an integer score in the range 1:6. The intervention groups are different sizes and there is some missing data. The object was to see if the interventions and time had any effect. I thought that meologit would be appropriate for this:
. meologit v inter##t || id:, coeflegend
Mixed-effects ologit regression                 Number of obs      =       462

Group variable:              id                  Number of groups   =       160
                                                Obs per group: min =         1

                                                                  avg =       2.9
                                                                    max =         3

Integration method: mvaghermite                 Integration points =         7
                                                Wald chi2(8)       =     25.93

Log likelihood = -699.97876                     Prob > chi2        =    0.0011
------------------------------------------------------------------------------
           v |      Coef.  Legend
-------------+----------------------------------------------------------------
       inter |
    Control  |          0  _b[v:0b.inter]
        DVD  |   1.862301  _b[v:1.inter]
        PPT  |    1.95872  _b[v:2.inter]
             |
           t |
          1  |          0  _b[v:1b.t]
          2  |   2.75e-16  _b[v:2.t]
          3  |  -.0267118  _b[v:3.t]
             |
     inter#t |
      DVD#2  |  -.4861785  _b[v:1.inter#2.t]
      DVD#3  |   -.641388  _b[v:1.inter#3.t]
      PPT#2  |  -1.400277  _b[v:2.inter#2.t]
      PPT#3  |   -1.04499  _b[v:2.inter#3.t]
-------------+----------------------------------------------------------------
       /cut1 |  -2.006599  _b[cut1:_cons]
       /cut2 |   .2863222  _b[cut2:_cons]
       /cut3 |   1.172534  _b[cut3:_cons]
       /cut4 |   3.385625  _b[cut4:_cons]
       /cut5 |   5.400076  _b[cut5:_cons]
-------------+----------------------------------------------------------------
id           |
   var(_cons)|   5.296882  _b[var(_cons[id]):_cons]
------------------------------------------------------------------------------
LR test vs. ologit regression:   chibar2(01) =   133.57 Prob>=chibar2 = 0.0000

I then wanted to compare the interventions and times but I ran into the problems with margins described in http://www.stata.com/statalist/archive/2013-08/msg00445.html. However I found that both pwcompare and lincom appear to work but give different results:
. pwcompare inter, eff
Pairwise comparisons of marginal linear predictions

Margins      : asbalanced

---------------------------------------------------------------------------------

                |                            Unadjusted           Unadjusted
                |   Contrast   Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------+----------------------------------------------------------------
v               |
          inter |
DVD vs Control  |   1.486445   .5114061     2.91   0.004      .484108    2.488783
 PPT vs Control  |   1.143631   .5056487     2.26   0.024     .1525774    2.134684
      PPT vs DVD  |  -.3428148   .5056207    -0.68   0.498    -1.333813    .6481835
---------------------------------------------------------------------------------
. pwcompare inter, eff asobserved

Pairwise comparisons of marginal linear predictions

Margins      : asobserved

---------------------------------------------------------------------------------

                |                            Unadjusted           Unadjusted
                |   Contrast   Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------+----------------------------------------------------------------
v               |
          inter |
DVD vs Control  |   1.493342   .5113274     2.92   0.003      .491159    2.495526
 PPT vs Control  |   1.149602     .50546     2.27   0.023     .1589188    2.140285
      PPT vs DVD  |  -.3437402   .5053265    -0.68   0.496    -1.334162    .6466815
---------------------------------------------------------------------------------
. lincom _b[v:0b.inter] - _b[v:1.inter]

 ( 1)  [v]0b.inter - [v]1.inter = 0
------------------------------------------------------------------------------

           v |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         (1) |  -1.862301   .5929079    -3.14   0.002    -3.024379   -.7002228
------------------------------------------------------------------------------
. lincom _b[v:0b.inter] - _b[v:2.inter]


 ( 1)  [v]0b.inter - [v]2.inter = 0
------------------------------------------------------------------------------

           v |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         (1) |   -1.95872   .5913064    -3.31   0.001    -3.117659   -.7997805
------------------------------------------------------------------------------
. lincom _b[v:1.inter] - _b[v:2.inter]


 ( 1)  [v]1.inter - [v]2.inter = 0
------------------------------------------------------------------------------

           v |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         (1) |  -.0964189   .5871835    -0.16   0.870    -1.247277     1.05444
------------------------------------------------------------------------------

My questions are
1. Is the use of pwcompare or lincom appropriate
2. Is there an alternative / better way of analysing this data.

Any advice gratefully received.

Stata 13.0

Thank you,
Janet

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/faqs/resources/statalist-faq/
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index