Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
RE: st: Coefficient Constraints as Counterfactuals
From
Matthew C Mahutga <[email protected]>
To
"[email protected]" <[email protected]>
Subject
RE: st: Coefficient Constraints as Counterfactuals
Date
Fri, 11 Jan 2013 00:11:06 +0000
Got it; thanks.
-----Original Message-----
From: [email protected] [mailto:[email protected]] On Behalf Of Nick Cox
Sent: Thursday, January 10, 2013 4:06 PM
To: [email protected]
Subject: Re: st: Coefficient Constraints as Counterfactuals
Suppose your model is
y = b_0 + b_1 x_1 + b_2 x_2
but for some reason you consider b_2 known (say 42). Then
y = b_0 + b_1 x_1 + 42 x_2
Then it is also true that
y - 42 x_2 = b_0 + b_1 x_1
and we form
y - 42 x_2 = y* (say)
and regress y* on x_1 to get estimates of b_0 and b_1. Clearly there is an assumption in there about zero average errors.
y - 42 would make no sense if only on dimensional grounds. (It seems common that people in many fields of statistical science don't use dimensional thinking: see http://www.stata.com/statalist/archive/2009-10/msg00811.html for a recommendation of a paper by David Finney (1917- ).)
Nick
On Thu, Jan 10, 2013 at 10:06 PM, Matthew C Mahutga <[email protected]> wrote:
> Thanks William and Nick.
>
> -linest- doesn't work for xtpcse, but I'm not sure why. It yields predicted values way beyond the observed bounds of the response.
>
> It works great for regress and xtreg (at least in my application) and is very intuitive to use. This does seem to be a nice approach insofar as it accommodates the covariance between parameters. But in my case, I'm engaging in pure unadulterated hypotheticals, and would actually prefer to keep the observed parameters fixed ;o).
>
> I attempted -estadd- or -eret2- to try to impose constraints post-facto, but had to admit they are beyond me.
>
> The procedure outlined by Nick gives intuitive results (at least for my purposes), but I'm still not exactly clear if I'm supposed to subtract from y (response, outcome, dependent) the constrained coefficient, or rather the product of the constrained coefficient and its covariate. My reading of his initial email leads me to believe it's the latter.
>
> Thanks for your help!
>
> Matthew
>
> -----Original Message-----
> From: [email protected]
> [mailto:[email protected]] On Behalf Of Richard
> Williams
> Sent: Thursday, January 10, 2013 12:23 PM
> To: [email protected]; [email protected]
> Subject: RE: st: Coefficient Constraints as Counterfactuals
>
> Here is an example using -linest- (which, of course, requires that you
> install -linest-. It is from the STB and can be found with -findit-)
>
> use "http://www.indiana.edu/~jslsoc/stata/spex_data/ordwarm2.dta",
> clear logit warmlt3 yr89 male white age ed test yr89 = -.5, coef
> constraint 1 yr89 = -.5 linest, c(1) modify logit warmlt3 yr89 male
> white age ed, constraint(1)
>
> Note that the test command and linest produce the same coefficients.
> Further imposing constraints after estimation gives different results than imposing constraints before estimation -- but they are supposed to be asympotically equivalent (like the difference between a LR chi square and a Wald chi-square).
>
> I don't know if it works with xtpcse, but you can try it.
>
>
> At 02:18 PM 1/10/2013, Matthew C Mahutga wrote:
>>Hi Nick.
>>
>>Thanks for this and for asking me to clarify.
>>
>>I'm using xtpcse with a first order autocorrelation correction.
>>
>>Do I understand you correctly that if my original model (with other
>>covariates omitted) is
>>
>>Y = b0 + b1x1+b2x2+b3x1*x2
>>
>>And I want to estimate the predicted values of a model in which b1 =
>>b1+b3, then I would regress Y^(=y-b1+b3x1) on x2 and the rest of the
>>covariates and then estimated the prediction?
>>
>>Thanks again,
>>
>>Matthew
>>
>>-----Original Message-----
>>From: [email protected]
>>[mailto:[email protected]] On Behalf Of Nick Cox
>>Sent: Thursday, January 10, 2013 10:41 AM
>>To: [email protected]
>>Subject: Re: st: Coefficient Constraints as Counterfactuals
>>
>>If you want say to -regress- such that
>>
>>y = b_0 + b_1 x_1 + 42 x_2
>>
>>then calculate
>>
>>y - 42 x_2
>>
>>and -regress- on x_1. Naturally, this isn't universal, but what could
>>be universal across all possible estimation commands? Moral:
>>You should tell us more about the command you are using.
>>
>>Nick
>>
>>On Thu, Jan 10, 2013 at 6:25 PM, Matthew C Mahutga
>><[email protected]> wrote:
>>
>> > I have a question that I hope has an easy answer that escapes me.
>> >
>> > I am using estimation command that does not support the
>> constraints option, but I would like to constrain a select group of
>> coefficients. For example, one model includes an interaction term
>> between a given socioeconomic process and a dummy variable for
>> institutional regime. I would like to ask questions like "what would
>> the trend in my outcome look like if the socioeconomic process had
>> the larger of the two conditional (i.e. by regime type) effects".
>> >
>> > Is there a universal means by which to set a given coefficient to
>> a fixed value prior to model estimation. Or, can I estimate predicted
>> values using stored results but change the coefficient on one
>> covariate beforehand?
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/