Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
FW: st: RE: ivreg2 & endogenity
From
Ozgur Ozdemir <[email protected]>
To
Stata <[email protected]>
Subject
FW: st: RE: ivreg2 & endogenity
Date
Thu, 2 Aug 2012 08:07:50 +0000
Hi Mark,
thanks for your quick response. unfortunately I am new to ivreg2 and still learning. I have some more questions. I put the ivreg2 output below. I have 4 variables which might be potentially endogenous and I am using the lags of them as instruments. in summary, it seems, the endog test result is giving p value of 0.2470 and as far as I know that is based on the regression anmong the error term and the exegenous variables so I should not be worried about endogentiy. Wald F for weak identification is also more than 10 and again to my knowledge rule of thumb if it is more than 10 that means the instruments are not week. but not sure how I should comment on the underidentification test and also Hansen J statistics ? thanks in advance.
. xi : ivreg2 y (x1 x2 x3 x4= L.x1 L.x2 L.x3 L.x4) x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 i.year industry1 industry2 industry3 industry4 i
> ndustry5 industry6 industry7 industry8 industry9 industry10 industry11 industry12 industry13 industry14 industry15, ffirst robust endog(x1
> x2 x3 x4)
i.year _Iyear_2000-2010 (naturally coded; _Iyear_2000 omitted)
Warning - collinearities detected
Vars dropped: _Iyear_2010 industry15
Summary results for first-stage regressions
-------------------------------------------
Variable | Shea Partial R2 | Partial R2 | F( 4, 5455) P-value
x1 | 0.3792 | 0.5499 | 608.90 0.0000
x2 | 0.3894 | 0.5678 | 672.62 0.0000
x3 | 0.2277 | 0.2304 | 243.86 0.0000
x4 | 0.4141 | 0.4148 | 114.91 0.0000
NB: first-stage F-stat heteroskedasticity-robust
Underidentification tests
Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)
Ha: matrix has rank=K1 (identified)
Kleibergen-Paap rk LM statistic Chi-sq(1)=643.07 P-val=0.0000
Kleibergen-Paap rk Wald statistic Chi-sq(1)=934.00 P-val=0.0000
Weak identification test
Ho: equation is weakly identified
Kleibergen-Paap Wald rk F statistic 231.84
See main output for Cragg-Donald weak id test critical values
Weak-instrument-robust inference
Tests of joint significance of endogenous regressors B1 in main equation
Ho: B1=0 and overidentifying restrictions are valid
Anderson-Rubin Wald test F(4,5455)=10.41 P-val=0.0000
Anderson-Rubin Wald test Chi-sq(4)=41.94 P-val=0.0000
Stock-Wright LM S statistic Chi-sq(4)=41.14 P-val=0.0000
NB: Underidentification, weak identification and weak-identification-robust
test statistics heteroskedasticity-robust
Number of observations N = 5494
Number of regressors K = 39
Number of instruments L = 39
Number of excluded instruments L1 = 4
IV (2SLS) estimation
--------------------
Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity
Number of obs = 5494
F( 38, 5455) = 79.40
Prob > F = 0.0000
Total (centered) SS = 10145.90481 Centered R2 = 0.3783
Total (uncentered) SS = 20003 Uncentered R2 = 0.6846
Residual SS = 6308.043746 Root MSE = 1.072
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x1 | .4208927 .1533017 2.75 0.006 .1204269 .7213586
x2 | -1.401601 .4784664 -2.93 0.003 -2.339377 -.4638237
x3 | .5369656 .1013611 5.30 0.000 .3383016 .7356296
x4 | .0150771 .1499296 0.10 0.920 -.2787796 .3089337
x5 | .1971591 .0604691 3.26 0.001 .0786418 .3156764
x6 | 1.610886 .0505437 31.87 0.000 1.511822 1.709949
x7 | .0033538 .0020311 1.65 0.099 -.000627 .0073346
x8 | -.0961036 .0331389 -2.90 0.004 -.1610547 -.0311525
x9 | -.0323573 .0179385 -1.80 0.071 -.0675162 .0028015
x10 | .1767141 .0582928 3.03 0.002 .0624622 .2909659
x11 | .066056 .0259094 2.55 0.011 .0152745 .1168374
x12 | -.0238117 .0089914 -2.65 0.008 -.0414345 -.0061888
x13 | .403002 .0753469 5.35 0.000 .2553248 .5506792
x14 | -16.08782 6.892246 -2.33 0.020 -29.59637 -2.579264
x15 | .1660394 .0168025 9.88 0.000 .1331071 .1989717
_Iyear_2001 | -.789929 .0726803 -10.87 0.000 -.9323797 -.6474783
_Iyear_2002 | -.722612 .0704957 -10.25 0.000 -.8607811 -.584443
_Iyear_2003 | -.5715681 .0716072 -7.98 0.000 -.7119156 -.4312205
_Iyear_2004 | -.4202427 .0726249 -5.79 0.000 -.5625849 -.2779005
_Iyear_2005 | -.2821438 .0764437 -3.69 0.000 -.4319707 -.1323169
_Iyear_2006 | -.329362 .073308 -4.49 0.000 -.4730431 -.1856809
_Iyear_2007 | -.2143846 .0716904 -2.99 0.003 -.3548952 -.073874
_Iyear_2008 | -.239012 .0728622 -3.28 0.001 -.3818194 -.0962047
_Iyear_2009 | -.1307312 .0772359 -1.69 0.091 -.2821108 .0206484
industry1 | -.2370206 .0844791 -2.81 0.005 -.4025966 -.0714446
industry2 | -.4670082 .0802934 -5.82 0.000 -.6243804 -.309636
industry3 | .3948047 .101585 3.89 0.000 .1957018 .5939076
industry4 | .0529189 .0808414 0.65 0.513 -.1055273 .2113651
industry5 | .1684467 .0417607 4.03 0.000 .0865974 .2502961
industry6 | -.9214761 .1204198 -7.65 0.000 -1.157494 -.6854577
industry7 | -.632609 .077908 -8.12 0.000 -.7853058 -.4799122
industry8 | -.7662738 .0570088 -13.44 0.000 -.878009 -.6545386
industry9 | .1785934 .0623475 2.86 0.004 .0563946 .3007922
industry10 | .3139048 .0646155 4.86 0.000 .1872608 .4405488
industry11 | .6298456 .0783227 8.04 0.000 .4763358 .7833553
industry12 | .3870012 .0724386 5.34 0.000 .2450241 .5289784
industry13 | -.7891128 .0845906 -9.33 0.000 -.9549075 -.6233182
industry14 | -.9416489 .1512921 -6.22 0.000 -1.238176 -.6451219
_cons | -1.77156 .2013795 -8.80 0.000 -2.166256 -1.376863
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic): 643.068
Chi-sq(1) P-val = 0.0000
------------------------------------------------------------------------------
Weak identification test (Kleibergen-Paap rk Wald F statistic): 231.843
Stock-Yogo weak ID test critical values: <not available>
------------------------------------------------------------------------------
Hansen J statistic (overidentification test of all instruments): 0.000
(equation exactly identified)
-endog- option:
Endogeneity test of endogenous regressors: 5.419
Chi-sq(4) P-val = 0.2470
Regressors tested: x1 x2 x3 x4
------------------------------------------------------------------------------
Instrumented: x1 x2 x3 x4
Included instruments: x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _Iyear_2001
_Iyear_2002 _Iyear_2003 _Iyear_2004 _Iyear_2005
_Iyear_2006 _Iyear_2007 _Iyear_2008 _Iyear_2009 industry1
industry2 industry3 industry4 industry5 industry6
industry7 industry8 industry9 industry10 industry11
industry12 industry13 industry14
Excluded instruments: L.x1 L.x2 L.x3 L.x4
Dropped collinear: _Iyear_2010 industry15
------------------------------------------------------------------------------
kind regards
Ozgur Ozdemir
T: +44 (0) 75 0332 9865
E: [email protected]
Skype : ozgurozdemir2005
> Subject: st: RE: ivreg2 & endogenity
> Date: Tue, 31 Jul 2012 19:07:04 +0100
> From: [email protected]
> To: [email protected]
>
> Ozgur,
>
> You can do either - it's up to you. In the first case, your null is that both x4 and x5 are exogenous. In the second case, you are doing two separate tests; in one, the null is that x4 is exogenous; in the other, the null is that x5 is exogenous.
>
> It's analogous to testing the coeffs on, say, x1 and x2. You can test that they are jointly 0, or you can do separate tests of whether one or the other is 0.
>
> HTH,
> Mark
>
> > -----Original Message-----
> > From: [email protected] [mailto:owner-
> > [email protected]] On Behalf Of Ozgur Ozdemir
> > Sent: 29 July 2012 17:40
> > To: Stata
> > Subject: st: ivreg2 & endogenity
> >
> >
> >
> > Hi,
> >
> > I would like to test the endogenity of 2 variables using their 1-year lags as
> > instruments. The model is
> >
> > ivreg2 y x1 x2 (x4 x5 = L.x4 L.x5), r
> >
> > the variables x4 and x5 might be endogenous.
> >
> >
> > and would like to test whether x4 and/or x5 is endogenous. However not
> > sure if I need to do test together
> > ivreg2 y x1 x2 (x4 x5 = L.x4 L.x5), r endogtest(x4 x5)
> >
> >
> > or separately one by one like the following
> > ivreg2 y x1 x2 (x4 x5 = L.x4 L.x5), r endogtest(x4)
> > ivreg2 y x1 x2 (x4 x5 = L.x4 L.x5), r endogtest(x5)
> >
> >
> >
> >
> > kind regards
> > Ozgur
> >
> > *
> > * For searches and help try:
> > * http://www.stata.com/help.cgi?search
> > * http://www.stata.com/support/statalist/faq
> > * http://www.ats.ucla.edu/stat/stata/
>
>
> --
> Heriot-Watt University is the Sunday Times
> Scottish University of the Year 2011-2012
>
> We invite research leaders and ambitious early career researchers to
> join us in leading and driving research in key inter-disciplinary themes.
> Please see www.hw.ac.uk/researchleaders for further information and how
> to apply.
>
> Heriot-Watt University is a Scottish charity
> registered under charity number SC000278.
>
>
> *
> * For searches and help try:
> * http://www.stata.com/help.cgi?search
> * http://www.stata.com/support/statalist/faq
> * http://www.ats.ucla.edu/stat/stata/
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/