Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: hshaz interpretation of the unobserved heterogeneity parameters
From
<[email protected]>
From
Judit VALL CASTELLO <[email protected]>
To
<[email protected]>
Subject
st: hshaz interpretation of the unobserved heterogeneity parameters
Date
Thu, 29 Sep 2011 10:40:03 +0100
Date
Wed, 28 Sep 2011 12:05:38 +0200 (CEST)
parameters
Dear all,
I am fitting hshaz for the first time and I have problems with
interpreting the coefficients and the unobserved heterogeneity
parameters.
This is the output that I get fitting a model with flexible baseline
hazard for each year (15 years) and ommiting one of the dummies instead
of the constant term (only showing the estimation of the model with UH):
<snip>
Discrete time PH model, with discrete mixture Number of obs =
101139
LR chi2() =
.
Log likelihood = -13131.227 Prob > chi2 =
.
-
------------------------------------------------------------------------
------
employment | Coef. Std. Err. z P>|z| [95% Conf.
Interval]
-
-------------+----------------------------------------------------------
------
hazard |
d2 | 2.202138 .0835986 26.34 0.000 2.038287
2.365988
d3 | 1.817322 .0942435 19.28 0.000 1.632608
2.002036
d4 | 1.559679 .1042669 14.96 0.000 1.35532
1.764039
d5 | 1.326683 .1144048 11.60 0.000 1.102453
1.550912
d6 | .9699759 .1286689 7.54 0.000 .7177896
1.222162
d7 | .9914302 .1361961 7.28 0.000 .7244907
1.25837
d8 | .5558144 .1620074 3.43 0.001 .2382858
.873343
d9 | .5627367 .1741448 3.23 0.001 .2214191
.9040543
d10 | .3581391 .2022719 1.77 0.077 -.0383066
.7545848
d11 | .3722488 .2234632 1.67 0.096 -.0657311
.8102287
d12 | .4746029 .2471491 1.92 0.055 -.0098004
.9590061
d13 | .3426948 .3125202 1.10 0.273 -.2698336
.9552232
d14 | -.5513795 .5904984 -0.93 0.350 -1.708735
.6059762
d15 | .3091984 .5912455 0.52 0.601 -.8496214
1.468018
fem | -.6304255 .0524701 -12.01 0.000 -.733265
-.5275859
agedisabil~y | -.0880126 .0030303 -29.04 0.000 -.0939519
-.0820732
totaldis | -3.095721 .2213199 -13.99 0.000 -3.5295
-2.661942
profcateg2 | .1461056 .0541343 2.70 0.007 .0400044
.2522068
profcateg3 | .1733369 .0991126 1.75 0.080 -.0209203
.3675941
lnbasereg | .2052545 .0567508 3.62 0.000 .094025
.3164839
pensln | -.3220117 .0415467 -7.75 0.000 -.4034417
-.2405816
selflj2 | -.0656422 .0537471 -1.22 0.222 -.1709846
.0397002
totempspe | .0086617 .0009305 9.31 0.000 .006838
.0104854
ur | -.033141 .0036001 -9.21 0.000 -.0401971
-.026085
_cons | 1.568922 .5036847 3.11 0.002 .5817179
2.556126
-
-------------+----------------------------------------------------------
------
m2 |
_cons | .920075 .2086793 4.41 0.000 .511071
1.329079
-
-------------+----------------------------------------------------------
------
logitp2 |
_cons | -.1763005 .8397107 -0.21 0.834 -1.822103
1.469502
-
-------------+----------------------------------------------------------
------
Prob. Type 1 | .5439613 .2083048 2.61 0.009 .1870183
.8608183
Prob. Type 2 | .4560387 .2083048 2.19 0.029 .1391817
.8129817
-
------------------------------------------------------------------------
------
Note: m1 = 0
The prob.Type 1 and 2 is the probability that someone in my sample
belogs to the first (or second) type of individuals, but how should I
interpret the m2 and the logitp2?
Also, how can I translate the coefficients (for example of the ur) into
marginal effects or probabilities?
====
-hshaz- is on SSC. Please mention the provenance of user-written
commands.
The information you seek is provided in the help file. logitp2 =
logit(prob type 2). m2 is the value of mass point 2 (mass point 1 is
normalised at zero.)
This is a proportional hazards model (applied to
interval-censored/discrete time data), so interpret coefficients in the
standard PH fashion.
Predictions of all kinds, including survival probabilities, require some
assumption about which 'class' a person belongs to (unless you
"integrate out"). You need to read up about this, and look into e.g.
-predict-.
You could also read the Survival Analysis Using Stata web material (URL
below), including the Lesson which illustrates these models in action.
Stephen
------------------
Professor Stephen P. Jenkins <[email protected]>
Department of Social Policy and STICERD
London School of Economics and Political Science
Houghton Street, London WC2A 2AE, UK
Tel: +44(0)20 7955 6527
Changing Fortunes: Income Mobility and Poverty Dynamics in Britain, OUP
2011, http://ukcatalogue.oup.com/product/9780199226436.do
Survival Analysis Using Stata:
http://www.iser.essex.ac.uk/survival-analysis
Downloadable papers and software: http://ideas.repec.org/e/pje7.html
Please access the attached hyperlink for an important electronic communications disclaimer: http://lse.ac.uk/emailDisclaimer
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/