Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: st: Query about finding predicted change in probability after logit for changing two variables


From   Urmi Bhattacharya <[email protected]>
To   [email protected]
Subject   Re: st: Query about finding predicted change in probability after logit for changing two variables
Date   Fri, 10 Jun 2011 11:25:43 -0400

Hi Austin,

Thank you so much for both your responses. I understand I need to
calculate the change in predicted probability at each duration of risk
separately, using only the sample of people who are at risk in the
duration.

So I need to modify the code below in such a way do as to figure out
how to do the same for a subset of the sample which is what i am
struggling to do.

However, when i run the code below just as you have typed it,I get the
following error message:

u if rep78<. using `c(sysdir_base)'a/auto
(1978 Automobile Data)

.
. g byte medium=inlist(rep78,3,4)

. g byte high=inlist(rep78,5)

. g byte turnhi=(turn>35)

. logit foreign high medium turnhi headroom mpg trunk

Iteration 0:   log likelihood = -42.400729
Iteration 1:   log likelihood =  -26.95755
Iteration 2:   log likelihood = -25.645315
Iteration 3:   log likelihood = -25.378962
Iteration 4:   log likelihood = -25.326588
Iteration 5:   log likelihood = -25.315298
Iteration 6:   log likelihood = -25.313291
Iteration 7:   log likelihood = -25.312837
Iteration 8:   log likelihood = -25.312726
Iteration 9:   log likelihood = -25.312703
Iteration 10:  log likelihood = -25.312698
Iteration 11:  log likelihood = -25.312697

Logistic regression                               Number of obs   =         69
                                                  LR chi2(6)      =      34.18
                                                  Prob > chi2     =     0.0000
Log likelihood = -25.312697                       Pseudo R2       =     0.4030

------------------------------------------------------------------------------
     foreign |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        high |   19.23396   2458.202     0.01   0.994    -4798.753    4837.221
      medium |   16.98224   2458.202     0.01   0.994    -4801.005    4834.969
      turnhi |   -1.44119   .9947506    -1.45   0.147    -3.390866     .508485
    headroom |  -.5846668   .6258184    -0.93   0.350    -1.811248    .6419148
         mpg |  -.0071336   .0863283    -0.08   0.934    -.1763339    .1620667
       trunk |  -.1430355   .1284915    -1.11   0.266    -.3948742    .1088032
       _cons |  -13.22992   2458.203    -0.01   0.996     -4831.22     4804.76
------------------------------------------------------------------------------
Note: 6 failures and 0 successes completely determined.

. replace medium=1
(21 real changes made)

. replace high=0
(11 real changes made)

. replace turnhi=0
(55 real changes made)

. predict p1
(option pr assumed; Pr(foreign))

. replace medium=0
(69 real changes made)

. replace high=1
(69 real changes made)

. replace turnhi=1
(69 real changes made)

. predict p2
(option pr assumed; Pr(foreign))

. g dp=p2-p1

.
. mat dp=r(mean)

. loc n=r(N)

. prog drop _all

. prog mymarg, rclass
  1. u if rep78<. using `c(sysdir_base)'a/auto, clear
  2. bsample
  3. g byte medium=inlist(rep78,3)
  4. g byte high=inlist(rep78,45)
  5. g byte turnhi=(turn>35)
  6. logit foreign high medium turnhi headroom mpg trunk
  7. replace medium=1
  8. replace high=0
  9. replace turnhi=0
 10. predict p1
 11. replace medium=0
 12. replace high=1
 13. replace turnhi=1
 14. predict p2
 15. g dp=p2-p1
 16. su dp, mean
 17. ret scalar dp=r(mean)
 18. eret clear
 19. end

. simulate, reps(141) seed(123): mymarg

      command:  mymarg
           dp:  r(dp)

Simulations (141)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
...............x...x.......x............x.........    50
.........................x........................   100
.........x.................x.............

. bstat, stat(dp) n(`n')
estimates post: matrix has missing values
r(504);

end of do-file

r(504);

Looking at the error code it says


[P]     error . . . . . . . . . . . . . . . . . . . . . . . .  Return code 504
        matrix has missing values;
        You have issued a matrix command attempting a matrix operation
        that, were it carried out, would result in a matrix with missing
        values; dividing by zero is a good example.


I was wondering if you could tell me why am I getting this? I wanted
to get this code to work, so that i can try and modify it to get the
change in predicted probability for subsamples of the dataset.

Thank you so much for your kind advice on this so far.

Best

Urmi



On Thu, Jun 9, 2011 at 3:20 PM, Austin Nichols <[email protected]> wrote:
> Urmi Bhattacharya <[email protected]> wrote:
> "now i want to find what is the predicted change in the
> probability of foreign for those cars with cqual_high=1 with
> turn_high=1 from those with cqual_medium=1 and turn_low=1"
>
> The meaning of the above is totally unclear to me,
> and I cannot understand you cqual_ coding is supposed to be,
> but perhaps you mean to:
> compare (1) medium==1 and turnhi==0
>     to (2) high==1   and turnhi==1
> like so:
>
> clear all
> u if rep78<. using `c(sysdir_base)'a/auto
> g byte medium=inlist(rep78,3,4)
> g byte high=inlist(rep78,5)
> g byte turnhi=(turn>35)
> logit foreign high medium turnhi headroom mpg trunk
> replace medium=1
> replace high=0
> replace turnhi=0
> predict p1
> replace medium=0
> replace high=1
> replace turnhi=1
> predict p2
> g dp=p2-p1 if e(sample)
> su dp, mean
> mat dp=r(mean)
> loc n=r(N)
> prog drop _all
> prog mymarg, rclass
> u if rep78<. using `c(sysdir_base)'a/auto, clear
> bsample
> g byte medium=inlist(rep78,3)
> g byte high=inlist(rep78,45)
> g byte turnhi=(turn>35)
> logit foreign high medium turnhi headroom mpg trunk
> replace medium=1
> replace high=0
> replace turnhi=0
> predict p1
> replace medium=0
> replace high=1
> replace turnhi=1
> predict p2
> g dp=p2-p1 if e(sample)
> su dp, mean
> ret scalar dp=r(mean)
> eret clear
> end
> simulate, reps(141) seed(123): mymarg
> bstat, stat(dp) n(`n')
>
> *But I want to reiterate that you should look at each duration's risk
> set separately:
> http://www.stata.com/statalist/archive/2011-06/msg00465.html
> *
> *   For searches and help try:
> *   http://www.stata.com/help.cgi?search
> *   http://www.stata.com/support/statalist/faq
> *   http://www.ats.ucla.edu/stat/stata/
>

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index