Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: st: Calculation of cubic splines
From
Mikkel Brabrand <[email protected]>
To
"[email protected]" <[email protected]>
Subject
Re: st: Calculation of cubic splines
Date
Thu, 19 May 2011 16:09:01 +0200
Thanks! What I need to do is recalculate the predicted probabilities in a different dataset using the same weights. That is why I am trying to figure out the formula...
Mikkel
Den 19/05/2011 kl. 15.08 skrev Maarten Buis:
> You already have the predicted probabilities, that is what you got
> when you typed -predict p_spline-. The analytic representation is not
> so easy, so that I cannot meaningfully start trying to type it here in
> plain text. I would just look at the methods and formulas section of
> the manual entry on -mkspline-(*). Alternatively I often like linear
> splines as a good compromise between interpretability and flexibility
> of the curve.
>
> Hope this helps,
> Maarten
>
> (*) Note however that when you are using Stata 10, the manual entry
> contains a typo in the formula. I believe a minus sign on the wrong
> side of one of the brackets.
>
> On Thu, May 19, 2011 at 2:57 PM, Mikkel Brabrand <[email protected]> wrote:
>> All.
>>
>> I am trying to use cubic splines to assess risk of in-hospital mortality using some vital signs. I would like to calculate the predicted mortality using cubic splines manually.
>>
>> I have defined the following knots:
>> . mkspline _Ssbt = sbt, cubic nknots(5) displayknots
>>
>> | knot1 knot2 knot3 knot4 knot5
>> -------------+-------------------------------------------------------
>> sbt | 97 119 132 146 178
>>
>> . mat sbt_knots = r(knots)
>>
>> . mkspline _Stemp = temp, cubic nknots(5) displayknots
>>
>> | knot1 knot2 knot3 knot4 knot5
>> -------------+-------------------------------------------------------
>> temp | 35.9 36.6 37 37.3 38.8
>>
>> . mat temp_knots = r(knots)
>>
>> . mkspline _Salder = alder, cubic nknots(5) displayknots
>>
>> | knot1 knot2 knot3 knot4 knot5
>> -------------+-------------------------------------------------------
>> alder | 23 53 66 76 88
>>
>> . mat alder_knots = r(knots)
>>
>> And have run the logistic regression as follows:
>>
>> . xi: logit in_hosp_mort _Ssbt* _Stemp* _Salder*, or
>>
>> Iteration 0: log likelihood = -364.70483
>> Iteration 1: log likelihood = -322.05257
>> Iteration 2: log likelihood = -301.68143
>> Iteration 3: log likelihood = -299.60534
>> Iteration 4: log likelihood = -299.5029
>> Iteration 5: log likelihood = -299.50192
>> Iteration 6: log likelihood = -299.50192
>>
>> Logistic regression Number of obs = 2979
>> LR chi2(12) = 130.41
>> Prob > chi2 = 0.0000
>> Log likelihood = -299.50192 Pseudo R2 = 0.1788
>>
>> ------------------------------------------------------------------------------
>> in_hosp_mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
>> -------------+----------------------------------------------------------------
>> _Ssbt1 | .9557737 .0141873 -3.05 0.002 .9283678 .9839888
>> _Ssbt2 | 1.19366 .1618851 1.31 0.192 .9150398 1.557117
>> _Ssbt3 | .4041954 .3164691 -1.16 0.247 .0871232 1.875205
>> _Ssbt4 | 3.502106 4.366206 1.01 0.315 .3041618 40.32311
>> _Stemp1 | .2456296 .0807298 -4.27 0.000 .1289796 .4677788
>> _Stemp2 | 6.086799 31.49901 0.35 0.727 .0002396 154643.8
>> _Stemp3 | 1.01e+11 3.39e+12 0.75 0.452 2.19e-18 4.62e+39
>> _Stemp4 | 3.34e-36 2.06e-34 -1.33 0.185 1.19e-88 9.42e+16
>> _Salder1 | 1.078022 .0906853 0.89 0.372 .9141613 1.271254
>> _Salder2 | 1.004445 .1631946 0.03 0.978 .7305158 1.381093
>> _Salder3 | .7612758 .8178836 -0.25 0.800 .0926928 6.252275
>> _Salder4 | 2.45316 5.18604 0.42 0.671 .0389283 154.5918
>> ------------------------------------------------------------------------------
>>
>> . predict p_spline if e(sample)
>> (option pr assumed; Pr(in_hosp_mort))
>> .
>> . roctab in_hosp_mort p_spline, summary
>>
>> ROC -Asymptotic Normal--
>> Obs Area Std. Err. [95% Conf. Interval]
>> --------------------------------------------------------
>> 2979 0.8207 0.0240 0.77361 0.86786
>>
>> .
>>
>> My question is: What is the formula I should use to calculate the predicted mortality? I have spend a great deal of time on this and have not been able to figure it out.
>>
>> Thanks.
>>
>> Mikkel
>> *
>> * For searches and help try:
>> * http://www.stata.com/help.cgi?search
>> * http://www.stata.com/support/statalist/faq
>> * http://www.ats.ucla.edu/stat/stata/
>>
>
>
>
> --
> --------------------------
> Maarten L. Buis
> Institut fuer Soziologie
> Universitaet Tuebingen
> Wilhelmstrasse 36
> 72074 Tuebingen
> Germany
>
>
> http://www.maartenbuis.nl
> --------------------------
>
> *
> * For searches and help try:
> * http://www.stata.com/help.cgi?search
> * http://www.stata.com/support/statalist/faq
> * http://www.ats.ucla.edu/stat/stata/
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/