Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: Calculation of cubic splines
From
Mikkel Brabrand <[email protected]>
To
"[email protected]" <[email protected]>
Subject
st: Calculation of cubic splines
Date
Thu, 19 May 2011 14:57:01 +0200
All.
I am trying to use cubic splines to assess risk of in-hospital mortality using some vital signs. I would like to calculate the predicted mortality using cubic splines manually.
I have defined the following knots:
. mkspline _Ssbt = sbt, cubic nknots(5) displayknots
| knot1 knot2 knot3 knot4 knot5
-------------+-------------------------------------------------------
sbt | 97 119 132 146 178
. mat sbt_knots = r(knots)
. mkspline _Stemp = temp, cubic nknots(5) displayknots
| knot1 knot2 knot3 knot4 knot5
-------------+-------------------------------------------------------
temp | 35.9 36.6 37 37.3 38.8
. mat temp_knots = r(knots)
. mkspline _Salder = alder, cubic nknots(5) displayknots
| knot1 knot2 knot3 knot4 knot5
-------------+-------------------------------------------------------
alder | 23 53 66 76 88
. mat alder_knots = r(knots)
And have run the logistic regression as follows:
. xi: logit in_hosp_mort _Ssbt* _Stemp* _Salder*, or
Iteration 0: log likelihood = -364.70483
Iteration 1: log likelihood = -322.05257
Iteration 2: log likelihood = -301.68143
Iteration 3: log likelihood = -299.60534
Iteration 4: log likelihood = -299.5029
Iteration 5: log likelihood = -299.50192
Iteration 6: log likelihood = -299.50192
Logistic regression Number of obs = 2979
LR chi2(12) = 130.41
Prob > chi2 = 0.0000
Log likelihood = -299.50192 Pseudo R2 = 0.1788
------------------------------------------------------------------------------
in_hosp_mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ssbt1 | .9557737 .0141873 -3.05 0.002 .9283678 .9839888
_Ssbt2 | 1.19366 .1618851 1.31 0.192 .9150398 1.557117
_Ssbt3 | .4041954 .3164691 -1.16 0.247 .0871232 1.875205
_Ssbt4 | 3.502106 4.366206 1.01 0.315 .3041618 40.32311
_Stemp1 | .2456296 .0807298 -4.27 0.000 .1289796 .4677788
_Stemp2 | 6.086799 31.49901 0.35 0.727 .0002396 154643.8
_Stemp3 | 1.01e+11 3.39e+12 0.75 0.452 2.19e-18 4.62e+39
_Stemp4 | 3.34e-36 2.06e-34 -1.33 0.185 1.19e-88 9.42e+16
_Salder1 | 1.078022 .0906853 0.89 0.372 .9141613 1.271254
_Salder2 | 1.004445 .1631946 0.03 0.978 .7305158 1.381093
_Salder3 | .7612758 .8178836 -0.25 0.800 .0926928 6.252275
_Salder4 | 2.45316 5.18604 0.42 0.671 .0389283 154.5918
------------------------------------------------------------------------------
. predict p_spline if e(sample)
(option pr assumed; Pr(in_hosp_mort))
.
. roctab in_hosp_mort p_spline, summary
ROC -Asymptotic Normal--
Obs Area Std. Err. [95% Conf. Interval]
--------------------------------------------------------
2979 0.8207 0.0240 0.77361 0.86786
.
My question is: What is the formula I should use to calculate the predicted mortality? I have spend a great deal of time on this and have not been able to figure it out.
Thanks.
Mikkel
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/