Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: Wald test in Random Coefficient Model
From
Shikha Sinha <[email protected]>
To
[email protected]
Subject
st: Wald test in Random Coefficient Model
Date
Thu, 24 Feb 2011 15:21:07 -0500
Hello Statalist members,
I have an individual level data from 50 countries. I want to examine
the association between material deprivation and health. In the pooled
analysis, I find a negative association between materail deprivation
and health. To test whether the individual relationship between
material deprivation and health varied systematically across
countries, I estimate a random coefficient model. Since, my dependent
variable is a binary variable, I used -xtmelogit syntax in stata.
Below is the output:
bysort wb_income_group: xtmelogit dprsnl_hlth drel age dfemale
dmarried dyear* highschool college religiosity if age < 76 || wp5:
drel, cov (unstructured) variance or
---------------------------------------------------------------------------------------------------------------------------------------------
-> wb_income_group = High income: OECD
note: dyear5 omitted because of collinearity
Refining starting values:
Iteration 0: log likelihood = -26443.813 (not concave)
Iteration 1: log likelihood = -26428.072 (not concave)
Iteration 2: log likelihood = -26396.888
Performing gradient-based optimization:
Iteration 0: log likelihood = -26396.888
Iteration 1: log likelihood = -26309.086 (not concave)
Iteration 2: log likelihood = -26301.598 (not concave)
Iteration 3: log likelihood = -26295.836
Iteration 4: log likelihood = -26293.757
Iteration 5: log likelihood = -26292.994
Iteration 6: log likelihood = -26292.803
Iteration 7: log likelihood = -26292.799
Iteration 8: log likelihood = -26292.799
Mixed-effects logistic regression Number of obs = 60604
Group variable: wp5 Number of groups = 41
Obs per group: min = 443
avg = 1478.1
max = 4601
Integration points = 7 Wald chi2(11) = 2324.18
Log likelihood = -26292.799 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
dprsnl_hlth | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
drel | 2.118035 .0996632 15.95 0.000 1.931435 2.322662
age | .9719757 .0007352 -37.58 0.000 .9705357 .9734178
dfemale | .7882532 .0179943 -10.42 0.000 .7537624 .8243223
dmarried | 1.228628 .0289709 8.73 0.000 1.173139 1.286743
dyear1 | .9609855 .1030671 -0.37 0.711 .7787969 1.185795
dyear2 | .8201067 .0430446 -3.78 0.000 .7399352 .9089647
dyear3 | .9043089 .0476424 -1.91 0.056 .8155908 1.002678
dyear4 | .94283 .0395463 -1.40 0.160 .8684212 1.023614
dyear5 | (omitted)
highschool | 1.304839 .0406918 8.53 0.000 1.227473 1.387082
college | 1.58343 .0587545 12.39 0.000 1.472361 1.702877
religiosity | .9546723 .0238213 -1.86 0.063 .9091068 1.002522
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
wp5: Unstructured |
var(drel) | .037479 .0209765 .0125136 .1122521
var(_cons) | .1952712 .0515963 .1163391 .3277558
cov(drel,_cons) | -.0052752 .0251633 -.0545943 .0440439
------------------------------------------------------------------------------
LR test vs. logistic regression: chi2(3) = 2132.55 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
-----------------------------------------------------------------------------------------------------------------------
My question is How do test the significance of randome coefficient
variance at country level? I saw a few papers using wald statistics.
Could you suggest how to get the walt statistic from the above output?
Is it this - Wald chi2(11) = 2324.18?
Thanks
Shikha
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/