Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: st: Heckprob problems


From   Qing Gong Yang <[email protected]>
To   [email protected]
Subject   Re: st: Heckprob problems
Date   Tue, 8 Feb 2011 15:03:56 +1300

Thanks. in this case, there is indeed high correlation between leader and lnms.

On Tue, Feb 8, 2011 at 2:53 PM, Fernando Rios Avila
<[email protected]> wrote:
> Well, I ve been checking ur results and also simulating some examples with other data. From what i see in your last output, it seems that you have to recheck again the nature of your data.
> If u see carefully, u have a lot of problems with the model convergence, which seems to be explained because one of the parameters, "rho", is constantly reaching the lower bound of its possible values (-1). From my experience it could be that you are doing too much of a good job explaining the selection model.
> What i suggest is to check the correlation of all the variables and see if there is any suspiciously high or low correlations between your explainatory variables.
> Best regards
>
>>>> Qing Gong Yang <[email protected]> 02/07/11 8:05 PM >>>
> Thanks for this.
>
> I did use
> heckprob y1 x1 x2 x3 x4, sel (y2= x1 x5 x6).
>
> There are about 300 observations, a little bit over 200 are censored.
>
> for one regression, I estimate heckprob y1 x1 x2 x3 x4, sel(y2= x5 x6
> x1) just for the convenience of output to table, yet the estimation
> does not work any more.
>
> Here is an example
>
> .heckprob slc1 x1 leader bte counter efficiency  vig divestment
> coordination   if efficiency<2, sel(ncomp=  x1 x2  lnms lnsmall )
>
> Fitting probit model:
>
> Iteration 0:   log likelihood = -52.340138
> Iteration 1:   log likelihood = -30.883946
> Iteration 2:   log likelihood = -28.066265
> Iteration 3:   log likelihood = -27.746348
> Iteration 4:   log likelihood = -27.740815
> Iteration 5:   log likelihood = -27.740812
>
> Fitting selection model:
>
> Iteration 0:   log likelihood = -176.79924
> Iteration 1:   log likelihood = -126.10593
> Iteration 2:   log likelihood = -123.48405
> Iteration 3:   log likelihood = -123.44962
> Iteration 4:   log likelihood = -123.44961
>
> Comparison:    log likelihood = -151.19042
>
> Fitting starting values:
>
> Iteration 0:   log likelihood =  -58.91751
> Iteration 1:   log likelihood =   -29.3684
> Iteration 2:   log likelihood = -23.529911
> Iteration 3:   log likelihood = -21.781926
> Iteration 4:   log likelihood = -21.505145
> Iteration 5:   log likelihood = -21.497738
> Iteration 6:   log likelihood = -21.497731
>
> Fitting full model:
>
> Iteration 0:   log likelihood = -232.35861  (not concave)
> Iteration 1:   log likelihood = -199.37133  (not concave)
> Iteration 2:   log likelihood = -188.63839
> Iteration 3:   log likelihood = -156.78336  (not concave)
> Iteration 4:   log likelihood = -148.90122
> Iteration 5:   log likelihood = -145.49084
> Iteration 6:   log likelihood = -144.70601
> Iteration 7:   log likelihood = -144.55228
> Iteration 8:   log likelihood = -144.53009
> Iteration 9:   log likelihood = -144.52176
> Iteration 10:  log likelihood = -144.51786
> Iteration 11:  log likelihood = -144.51461
> Iteration 12:  log likelihood = -144.51368
> Iteration 13:  log likelihood = -144.51337
> Iteration 14:  log likelihood = -144.51303  (backed up)
> Iteration 15:  log likelihood = -144.51293
> Iteration 16:  log likelihood = -144.51286  (not concave)
> Iteration 17:  log likelihood = -144.51282  (not concave)
> Iteration 18:  log likelihood = -144.51282  (not concave)
> Iteration 19:  log likelihood = -144.51281  (not concave)
> Iteration 20:  log likelihood = -144.51281  (not concave)
> Iteration 21:  log likelihood =  -144.5128  (not concave)
> Iteration 22:  log likelihood =  -144.5128  (not concave)
> Iteration 23:  log likelihood =  -144.5128  (not concave)
> numerical derivatives are approximate
> nearby values are missing
> Iteration 24:  log likelihood =  -144.5128  (not concave)
> numerical derivatives are approximate
> nearby values are missing
> Iteration 25:  log likelihood =  -144.5128  (not concave)
> numerical derivatives are approximate
> nearby values are missing
> Iteration 26:  log likelihood =  -144.5128  (not concave)
> numerical derivatives are approximate
> nearby values are missing
> Iteration 27:  log likelihood =  -144.5128
>
> Probit model with sample selection              Number of obs      =       294
>                                                Censored obs       =       209
>                                                Uncensored obs     =        85
>
>                                                Wald chi2(8)       =  13603.11
> Log likelihood = -144.5128                      Prob > chi2        =    0.0000
>
> ------------------------------------------------------------------------------
>             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
> -------------+----------------------------------------------------------------
> slc1         |
>       x1    |   .0050248    .012672     0.40   0.692    -.0198118    .0298614
>      leader |    .595136   .4217066     1.41   0.158    -.2313938    1.421666
>         bte |   .8001224   .2163814     3.70   0.000     .3760227    1.224222
>     counter |  -.4242046   .0052946   -80.12   0.000    -.4345818   -.4138273
>  efficiency |  -.3950646   .0125419   -31.50   0.000    -.4196463   -.3704829
>         vig |   .2503349   .4029704     0.62   0.534    -.5394726    1.040142
>  divestment |   .0444567    .432335     0.10   0.918    -.8029043    .8918178
> coordination |   .8577901   .3261174     2.63   0.009     .2186118    1.496968
>       _cons |  -1.192662   .5165695    -2.31   0.021     -2.20512   -.1802043
> -------------+----------------------------------------------------------------
> ncomp        |
>      x1      |   .5470875   .0137725    39.72   0.000     .5200939    .5740811
>      x2 |   -.060799   .2821573    -0.22   0.829    -.6138171    .4922191
>        lnms |   .0202606    .001606    12.62   0.000     .0171128    .0234084
>    lnsmalls |   .0329228   .0008017    41.06   0.000     .0313514    .0344941
>       _cons |  -2.623737   .1526243   -17.19   0.000    -2.922875   -2.324599
> -------------+----------------------------------------------------------------
>     /athrho |  -16.16538   12092.39    -0.00   0.999    -23716.82    23684.49
> -------------+----------------------------------------------------------------
>         rho |         -1   4.38e-10                            -1           1
> ------------------------------------------------------------------------------
> LR test of indep. eqns. (rho = 0):   chi2(1) =    13.36   Prob > chi2 = 0.0003
>
>
> when I estimate
>  heckprob slc1  x1 leader bte counter efficiency  vig divestment
> coordination   if efficiency<2, sel(ncomp= lnms lnsmall x1 x2   )
>
> it does not work any more.
>
>
>
>
>
> On Tue, Feb 8, 2011 at 1:01 PM, Fernando Rios Avila
> <[email protected]> wrote:
>> Well, my only suggestion is to be sure that your y1 variable is appropriatly censored, since it seems that you are not impossing any censorship on the selection equation. Perhaps what u want to do is:
>>
>> heckprob y1 x1 x2 x3 x4, sel (y2= x1 x5 x6)
>> assuming that y2 =1 when the selection holds, and y2=0 when its not observed
>> Finally, i wonder which are the variables that you were switching possitions.
>>
>> Best regards
>>
>> Fernando Rios Avila
>>
>>
>>>>> Qing Gong Yang <[email protected]> 02/07/11 6:54 PM >>>
>> I am trying to estimate a probit model with selection using Stata 9 and 10's
>> Heckprob command in the following form:
>> Heckprob y1 x1 x2 x3 x4, sel (y2 x1 x5 x6).
>>
>> I came across several problems:
>> first, the results are not stable. They change even when I just change the
>> order of the variables.
>> second,  funny results sometimes with very big Wald Chi2 value and very big
>> Z values.
>> third, The maximum log likelihood estimation seems to be critised by some as
>> inconsistent too.
>>
>> Any suggestions?
>> *
>> *   For searches and help try:
>> *   http://www.stata.com/help.cgi?search
>> *   http://www.stata.com/support/statalist/faq
>> *   http://www.ats.ucla.edu/stat/stata/
>>
>>
>> *
>> *   For searches and help try:
>> *   http://www.stata.com/help.cgi?search
>> *   http://www.stata.com/support/statalist/faq
>> *   http://www.ats.ucla.edu/stat/stata/
>>
>
> *
> *   For searches and help try:
> *   http://www.stata.com/help.cgi?search
> *   http://www.stata.com/support/statalist/faq
> *   http://www.ats.ucla.edu/stat/stata/
>
>
> *
> *   For searches and help try:
> *   http://www.stata.com/help.cgi?search
> *   http://www.stata.com/support/statalist/faq
> *   http://www.ats.ucla.edu/stat/stata/
>

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index