|
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: Reading the output of xtmelogit
I ran the following model and I am having trouble reading the hierarchial part of the data. I understand the individual level characteristics but do not understand if nghd disadvantage is significant for the county or for the zip code. I own the book multilevel and longitudnal modeling using stata, but they do not go into detail on the output of the xtmelogit model. Any help would be much appreciated.
Thanks,
Theron
. xtmelogit Cong_Crack_Cocaine Age Black Hispanic Indian Other_Race Severe1 School2 Unemployment Other_Work
> Married Separated Homless Other_Residence Inpatient_Tx Outpatient_Tx Arrest Jail ///
> Dependency Int_Resp_Age Int_Resp_Gender Charge_Violent Charge_Property Charge_Other || county: Co
> _Nghd_Dis || RESIDZIP: Nghd_Dis, variance
Refining starting values:
Iteration 0: log likelihood = -2376.3809 (not concave)
Iteration 1: log likelihood = -2351.6708
Iteration 2: log likelihood = -2304.5625
Performing gradient-based optimization:
Iteration 0: log likelihood = -2304.5625
Iteration 1: log likelihood = -2292.9815 (not concave)
Iteration 2: log likelihood = -2290.5132
Iteration 3: log likelihood = -2289.2897
Iteration 4: log likelihood = -2289.0232
Iteration 5: log likelihood = -2289.0208
Iteration 6: log likelihood = -2289.0208
Mixed-effects logistic regression Number of obs = 3861
--------------------------------------------------------------------------
| No. of Observations per Group Integration
Group Variable | Groups Minimum Average Maximum Points
----------------+---------------------------------------------------------
county | 196 1 19.7 281 7
RESIDZIP | 1270 1 3.0 27 7
--------------------------------------------------------------------------
Wald chi2(23) = 554.42
Log likelihood = -2289.0208 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
Cong_Crack~e | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Age | .5085038 .042903 11.85 0.000 .4244154 .5925922
Black | .2516724 .0886922 2.84 0.005 .0778389 .4255059
Hispanic | -.4572121 .1197924 -3.82 0.000 -.6920008 -.2224234
Indian | .017753 .3164907 0.06 0.955 -.6025574 .6380635
Other_Race | -.2039618 .2765931 -0.74 0.461 -.7460743 .3381507
Severe1 | .0010094 .0635329 0.02 0.987 -.1235128 .1255315
School2 | .0528132 .0488388 1.08 0.280 -.0429092 .1485355
Unemployment | -.31175 .078181 -3.99 0.000 -.464982 -.158518
Other_Work | .2927659 .1336319 2.19 0.028 .0308523 .5546796
Married | -.1355542 .0964009 -1.41 0.160 -.3244965 .0533881
Separated | -.1180146 .1027922 -1.15 0.251 -.3194835 .0834543
Homless | -.692701 .1447875 -4.78 0.000 -.9764793 -.4089228
Other_Resi~e | -.0991939 .1515966 -0.65 0.513 -.3963178 .19793
Inpatient_Tx | .6023429 .0811455 7.42 0.000 .4433007 .7613851
Outpatient~x | .1074848 .088585 1.21 0.225 -.0661387 .2811083
Arrest | -.1030657 .1621974 -0.64 0.525 -.4209667 .2148353
Jail | -.2018198 .1411266 -1.43 0.153 -.4784229 .0747832
Dependency | 1.312378 .096314 13.63 0.000 1.123606 1.50115
Int_Resp_Age | -.1239394 .051547 -2.40 0.016 -.2249698 -.0229091
Int_Resp_G~r | -.1627547 .0893628 -1.82 0.069 -.3379026 .0123933
Charge_Vio~t | .0829887 .1133725 0.73 0.464 -.1392172 .3051947
Charge_Pro~y | -.0511462 .1037836 -0.49 0.622 -.2545583 .1522658
Charge_Other | -.0185515 .3706106 -0.05 0.960 -.7449349 .7078319
_cons | -1.547129 .76264 -2.03 0.042 -3.041876 -.0523824
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
county: Independent |
var(Co_Ngh~s) | 3.468035 2.131447 1.039768 11.56725
var(_cons) | 7.75e-17 1.75e-09 0 .
-----------------------------+------------------------------------------------
RESIDZIP: Independent |
var(Nghd_Dis) | 3.65e-13 1.93e-06 0 .
var(_cons) | 8.22e-16 1.21e-08 0 .
------------------------------------------------------------------------------
LR test vs. logistic regression: chi2(4) = 8.27 Prob > chi2 = 0.0821
Note: LR test is conservative and provided only for reference.
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/