Thank you for your input.If I understand correctly,if the gap,between two
values in sequence,generated by Stata,were a lot smaller,to infinitely
smaller,I would have gotten ,a lot more than 68518 values ,to an
infinite (uncountable) number of values ,for the points between 0 and
00004.
With regards to the farthest maximum point that I was getting ,from the
thousands and thousands of draws that I took,that was 6.23026 ,would
that be a lot larger ,to infinitely large,as well ?
On 4/10/2009, "David Greenberg" <[email protected]> wrote:
>This is a fruitless enterprise. The normal distribution is continuous. It takes on an infinite number of values even if you restrict yourself to a part of the distribution that lies between two points. The number of values is uncountable.
>- David Greenberg, Sociology Department, New York University
>
>----- Original Message -----
>From: "[email protected]" <[email protected]>
>Date: Sunday, October 4, 2009 7:20 pm
>Subject: st: Number of values in Gaussian Normal Distribution
>To: "[email protected]" <[email protected]>
>
>
>> Dear Statlist,
>> I am trying to locate the number of values that constitute a Gaussian
>> Normal Distribution.I am working only on the right side,the positive
>> side,assuming that the left side is the negative of the positive side.
>> The way I am going about concluding the number of values in the right
>> hand side of the Gaussian Normal Distribution,is by taking thousand upon
>> thousands of draws from the Gaussian distribution, and keeping the
>> values for the particular interval,each time accumulating,sorting and
>> dropping the repeating values until I notice that the particular
>> interval doesn't grow any further.
>> I start with the interval (0 to .00004) ,as the first interval and then
>> (.00004 to .00008),as the second interval ..... , ( .0076 to .0078)
>> in
>> the 195th interval ,which seems to have roughly,the same number of
>> values,very close to 68518.I discovered some patterns in the number of
>> values that intervals hold,which made it somewhat easier for me.The
>> following is what I have found so far.Note that the variable x ,is the
>> number of time the same number of values,repeats.t
>>
>> val min max intrv num x tot
>> 68518 0 .00004 .00004 1 0 0
>> 68525 .00776 .0078 .00004 195 195 13362375
>> 50937 .0078 .00784 .00004 196 1 50937
>> 42939 .00784 .00788 .00004 197 0 0
>> 42944 .01556 .0156 .00004 390 194 8331136
>> 34890 .0156 .01564 .00004 391 1 34890
>> 53687 .01564 .01574 .0001 392 0 0
>> 53687 .03114 .03124 .0001 547 156 8375172
>> 13420 .03124 .03128 .00004 548 1 13420
>> 53687 .03128 .03148 .0002 549 0 0
>> 53687 .06228 .06248 .0002 704 156 8375172
>> 18790 .06248 .0626 .00012 705 1 18790
>> 53687 .0626 .063 .0004 706 0 0
>> 53687 .1246 .125 .0004 861 156 8375172
>> 67109 .125 .126 .001 862 0 0
>> 67108 .249 .25 .001 986 125 8388500
>> 33555 .25 .251 .001 987 0 0
>> 33554 .499 .5 .001 1236 250 8388500
>> 33555 .5 .502 .002 1237 0 0
>> 33554 .998 1 .002 1486 250 8388500
>> 33555 1 1.004 .004 1487 0 0
>> 33554 1.996 2 .004 1736 250 8388500
>> 41944 2 2.01 .01 1737 1 41944
>> 41943 2.01 2.02 .01 1738 0 0
>> 41925 3.44 3.45 .01 1881 144 6037200
>> 41927 3.45 3.46 .01 1882 1 41927
>> 41880 3.46 3.47 .01 1883 1 41880
>> 40876 3.47 3.48 .01 1884 1 40876
>> 39480 3.48 3.49 .01 1885 1 39480
>> 38124 3.49 3.5 .01 1886 1 38124
>> 36813 3.5 3.51 .01 1887 1 36813
>> 35541 3.51 3.52 .01 1888 1 35541
>> 34307 3.52 3.53 .01 1889 1 34307
>> 33126 3.53 3.54 .01 1890 1 33126
>> 31980 3.54 3.55 .01 1891 1 31980
>> 30846 3.55 3.56 .01 1892 1 30846
>> 29779 3.56 3.57 .01 1893 1 29779
>> 28723 3.57 3.58 .01 1894 1 28723
>> 27718 3.58 3.59 .01 1895 1 27718
>> 26748 3.59 3.6 .01 1896 1 26748
>> 25797 3.6 3.61 .01 1897 1 25797
>> 24885 3.61 3.62 .01 1898 1 24885
>> 24001 3.62 3.63 .01 1899 1 24001
>> 23140 3.63 3.64 .01 1900 1 23140
>> 22316 3.64 3.65 .01 1901 1 22316
>> 21516 3.65 3.66 .01 1902 1 21516
>> 20743 3.66 3.67 .01 1903 1 20743
>> 19998 3.67 3.68 .01 1904 1 19998
>> 19270 3.68 3.69 .01 1905 1 19270
>> 18569 3.69 3.7 .01 1906 1 18569
>> 17902 3.7 3.71 .01 1907 1 17902
>> 17250 3.71 3.72 .01 1908 1 17250
>> 16623 3.72 3.73 .01 1909 1 16623
>> 15994 3.73 3.74 .01 1910 1 15994
>> 15394 3.74 3.75 .01 1911 1 15394
>> 14826 3.75 3.76 .01 1912 1 14826
>> 14255 3.76 3.77 .01 1913 1 14255
>> 13738 3.77 3.78 .01 1914 1 13738
>> 13235 3.78 3.79 .01 1915 1 13235
>> 12605 3.79 3.78 .01 1916 1 12605
>> 38335 3.78 3.81 .03 1917 1 38335
>> 44761 3.81 3.85 .04 1918 1 44761
>> 47063 3.85 3.9 .05 1919 1 47063
>> 38734 3.9 3.95 .05 1920 1 38734
>> 31780 3.95 4 .05 1921 1 31780
>> 47278 4 4.1 .1 1922 1 47278
>> 52029 4.1 4.3 .2 1923 1 52029
>> 36661 4.3 6.3 2 1924 1 36661
>>
>> According to the previous data,the number of values that make up the
>> Gaussian distribution is 87796774 * 2 = 175593548.I am wondering if
>> there is a simpler way of calculating the number of values,that
>> constitutes the Gaussian Distribution.
>> Vicror M. Zammit
>>
>> *
>> * For searches and help try:
>> * http://www.stata.com/help.cgi?search
>> * http://www.stata.com/support/statalist/faq
>> * http://www.ats.ucla.edu/stat/stata/
>*
>* For searches and help try:
>* http://www.stata.com/help.cgi?search
>* http://www.stata.com/support/statalist/faq
>* http://www.ats.ucla.edu/stat/stata/
>
>
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/