Statalist


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

st: Number of values in Gaussian Normal Distribution


From   "[email protected]" <[email protected]>
To   "[email protected]" <[email protected]>
Subject   st: Number of values in Gaussian Normal Distribution
Date   Sun, 04 Oct 2009 22:28:39 +0100

Dear Statlist,
I am trying to locate the number of values that constitute a Gaussian
Normal Distribution.I am working only on the right side,the positive
side,assuming that the left side is the negative of the positive side.
The way I am going about concluding the number of values in the right
hand side of the Gaussian Normal Distribution,is by taking thousand upon
thousands of draws from the Gaussian distribution, and keeping the
values for the particular interval,each time accumulating,sorting and
dropping the repeating values until I notice that the particular
interval doesn't grow any further.
I start with the interval (0 to .00004) ,as the first interval and then
(.00004 to .00008),as the second interval  ..... ,  ( .0076 to .0078) in
the 195th interval ,which seems to have roughly,the same number of
values,very close to 68518.I discovered some patterns in the number of
values that intervals hold,which made it somewhat easier for me.The
following is what I have found so far.Note that the variable x ,is the
number of time the same number of values,repeats.t

val       min        max       intrv  num  x          tot
 68518   0       .00004    .00004  1     0           0
 68525 .00776  .0078     .00004  195   195   13362375
 50937 .0078   .00784    .00004  196   1     50937
 42939 .00784  .00788    .00004  197   0     0
 42944 .01556  .0156     .00004  390   194   8331136
 34890 .0156   .01564    .00004  391   1     34890
 53687 .01564  .01574    .0001   392   0     0
 53687 .03114  .03124    .0001   547   156   8375172
 13420 .03124  .03128    .00004  548   1     13420
 53687 .03128  .03148    .0002   549   0     0
 53687 .06228  .06248    .0002   704   156   8375172
 18790 .06248  .0626     .00012  705   1     18790
 53687 .0626   .063      .0004   706   0     0
 53687 .1246   .125      .0004   861   156   8375172
 67109 .125    .126      .001    862   0     0
 67108 .249    .25       .001    986   125   8388500
 33555 .25     .251      .001    987   0     0
 33554 .499    .5        .001    1236  250   8388500
 33555 .5      .502      .002    1237  0     0
 33554 .998    1         .002    1486  250   8388500
 33555 1       1.004     .004    1487  0     0
 33554 1.996   2         .004    1736  250   8388500
 41944 2       2.01      .01     1737  1     41944
 41943 2.01    2.02      .01     1738  0     0
 41925 3.44    3.45      .01     1881  144   6037200
 41927 3.45    3.46      .01     1882  1     41927
 41880 3.46    3.47      .01     1883  1     41880
 40876 3.47    3.48      .01     1884  1     40876
 39480 3.48    3.49      .01     1885  1     39480
 38124 3.49    3.5       .01     1886  1     38124
 36813 3.5     3.51      .01     1887  1     36813
 35541 3.51    3.52      .01     1888  1     35541
 34307 3.52    3.53      .01     1889  1     34307
 33126 3.53    3.54      .01     1890  1     33126
 31980 3.54    3.55      .01     1891  1     31980
 30846 3.55    3.56      .01     1892  1     30846
 29779 3.56    3.57      .01     1893  1     29779
 28723 3.57    3.58      .01     1894  1     28723
 27718 3.58    3.59      .01     1895  1     27718
 26748 3.59    3.6       .01     1896  1     26748
 25797 3.6     3.61      .01     1897  1     25797
 24885 3.61    3.62      .01     1898  1     24885
 24001 3.62    3.63      .01     1899  1     24001
 23140 3.63    3.64      .01     1900  1     23140
 22316 3.64    3.65      .01     1901  1     22316
 21516 3.65    3.66      .01     1902  1     21516
 20743 3.66    3.67      .01     1903  1     20743
 19998 3.67    3.68      .01     1904  1     19998
 19270 3.68    3.69      .01     1905  1     19270
 18569 3.69    3.7       .01     1906  1     18569
 17902 3.7     3.71      .01     1907  1     17902
 17250 3.71    3.72      .01     1908  1     17250
 16623 3.72    3.73      .01     1909  1     16623
 15994 3.73    3.74      .01     1910  1     15994
 15394 3.74    3.75      .01     1911  1     15394
 14826 3.75    3.76      .01     1912  1     14826
 14255 3.76    3.77      .01     1913  1     14255
 13738 3.77    3.78      .01     1914  1     13738
 13235 3.78    3.79      .01     1915  1     13235
 12605 3.79    3.78      .01     1916  1     12605
 38335 3.78    3.81      .03     1917  1     38335
 44761 3.81    3.85      .04     1918  1     44761
 47063 3.85    3.9       .05     1919  1     47063
 38734 3.9     3.95      .05     1920  1     38734
 31780 3.95    4         .05     1921  1     31780
 47278 4       4.1       .1      1922  1     47278
 52029 4.1     4.3       .2      1923  1     52029
 36661 4.3     6.3       2       1924  1     36661

According to the previous data,the number of values that make up the
Gaussian distribution is 87796774 * 2  = 175593548.I am wondering if
there is a simpler way of calculating the number of values,that
constitutes the Gaussian Distribution.
Vicror M. Zammit

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index