Dear Statlist,
I am trying to locate the number of values that constitute a Gaussian
Normal Distribution.I am working only on the right side,the positive
side,assuming that the left side is the negative of the positive side.
The way I am going about concluding the number of values in the right
hand side of the Gaussian Normal Distribution,is by taking thousand upon
thousands of draws from the Gaussian distribution, and keeping the
values for the particular interval,each time accumulating,sorting and
dropping the repeating values until I notice that the particular
interval doesn't grow any further.
I start with the interval (0 to .00004) ,as the first interval and then
(.00004 to .00008),as the second interval ..... , ( .0076 to .0078) in
the 195th interval ,which seems to have roughly,the same number of
values,very close to 68518.I discovered some patterns in the number of
values that intervals hold,which made it somewhat easier for me.The
following is what I have found so far.Note that the variable x ,is the
number of time the same number of values,repeats.t
val min max intrv num x tot
68518 0 .00004 .00004 1 0 0
68525 .00776 .0078 .00004 195 195 13362375
50937 .0078 .00784 .00004 196 1 50937
42939 .00784 .00788 .00004 197 0 0
42944 .01556 .0156 .00004 390 194 8331136
34890 .0156 .01564 .00004 391 1 34890
53687 .01564 .01574 .0001 392 0 0
53687 .03114 .03124 .0001 547 156 8375172
13420 .03124 .03128 .00004 548 1 13420
53687 .03128 .03148 .0002 549 0 0
53687 .06228 .06248 .0002 704 156 8375172
18790 .06248 .0626 .00012 705 1 18790
53687 .0626 .063 .0004 706 0 0
53687 .1246 .125 .0004 861 156 8375172
67109 .125 .126 .001 862 0 0
67108 .249 .25 .001 986 125 8388500
33555 .25 .251 .001 987 0 0
33554 .499 .5 .001 1236 250 8388500
33555 .5 .502 .002 1237 0 0
33554 .998 1 .002 1486 250 8388500
33555 1 1.004 .004 1487 0 0
33554 1.996 2 .004 1736 250 8388500
41944 2 2.01 .01 1737 1 41944
41943 2.01 2.02 .01 1738 0 0
41925 3.44 3.45 .01 1881 144 6037200
41927 3.45 3.46 .01 1882 1 41927
41880 3.46 3.47 .01 1883 1 41880
40876 3.47 3.48 .01 1884 1 40876
39480 3.48 3.49 .01 1885 1 39480
38124 3.49 3.5 .01 1886 1 38124
36813 3.5 3.51 .01 1887 1 36813
35541 3.51 3.52 .01 1888 1 35541
34307 3.52 3.53 .01 1889 1 34307
33126 3.53 3.54 .01 1890 1 33126
31980 3.54 3.55 .01 1891 1 31980
30846 3.55 3.56 .01 1892 1 30846
29779 3.56 3.57 .01 1893 1 29779
28723 3.57 3.58 .01 1894 1 28723
27718 3.58 3.59 .01 1895 1 27718
26748 3.59 3.6 .01 1896 1 26748
25797 3.6 3.61 .01 1897 1 25797
24885 3.61 3.62 .01 1898 1 24885
24001 3.62 3.63 .01 1899 1 24001
23140 3.63 3.64 .01 1900 1 23140
22316 3.64 3.65 .01 1901 1 22316
21516 3.65 3.66 .01 1902 1 21516
20743 3.66 3.67 .01 1903 1 20743
19998 3.67 3.68 .01 1904 1 19998
19270 3.68 3.69 .01 1905 1 19270
18569 3.69 3.7 .01 1906 1 18569
17902 3.7 3.71 .01 1907 1 17902
17250 3.71 3.72 .01 1908 1 17250
16623 3.72 3.73 .01 1909 1 16623
15994 3.73 3.74 .01 1910 1 15994
15394 3.74 3.75 .01 1911 1 15394
14826 3.75 3.76 .01 1912 1 14826
14255 3.76 3.77 .01 1913 1 14255
13738 3.77 3.78 .01 1914 1 13738
13235 3.78 3.79 .01 1915 1 13235
12605 3.79 3.78 .01 1916 1 12605
38335 3.78 3.81 .03 1917 1 38335
44761 3.81 3.85 .04 1918 1 44761
47063 3.85 3.9 .05 1919 1 47063
38734 3.9 3.95 .05 1920 1 38734
31780 3.95 4 .05 1921 1 31780
47278 4 4.1 .1 1922 1 47278
52029 4.1 4.3 .2 1923 1 52029
36661 4.3 6.3 2 1924 1 36661
According to the previous data,the number of values that make up the
Gaussian distribution is 87796774 * 2 = 175593548.I am wondering if
there is a simpler way of calculating the number of values,that
constitutes the Gaussian Distribution.
Vicror M. Zammit
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/