Statalist The Stata Listserver


[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

Re: st: Newey estimations


From   "Clive Nicholas" <[email protected]>
To   [email protected]
Subject   Re: st: Newey estimations
Date   Thu, 3 Aug 2006 00:51:30 +0100 (BST)

Evelyn Colino de Cantero wrote:

[...]

> Does somebody knows what is the exactly procedure Stata
> follows to test parameters under linear reg. with Newey-West
> std. errors estimators?

Why use a wimpish, water-pistol version of OLS Newey-West in Stata when
you can use a OLS Newey-West package that's chock-full with AK47s, Desert
Eagles and Kalashnikovs? An example:

. webuse grunfeld

. ivreg2 invest mvalue kstock, bw(2) robust small

OLS regression with robust standard errors
------------------------------------------
Heteroskedasticity and autocorrelation-consistent statistics
  kernel=Bartlett; bandwidth=2
  time variable (t):  year
  group variable (i): company

                                                    Number of obs =      200
                                                    F(  2,   197) =   113.16
                                                    Prob > F      =   0.0000
Total (centered) SS     =  9359943.917              Centered R2   =   0.8124
Total (uncentered) SS   =  13620706.07              Uncentered R2 =   0.8711
Residual SS             =  1755850.432              Root MSE      =    94.41
----------------------------------------------------------------------------
           |               Robust
    invest |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-----------+----------------------------------------------------------------
    mvalue |   .1155622   .0085916    13.45   0.000     .0986189    .1325054
    kstock |   .2306785    .058479     3.94   0.000     .1153533    .3460037
     _cons |  -42.71437   14.04683    -3.04   0.003    -70.41583   -15.01291
----------------------------------------------------------------------------

. ivreg2 invest mvalue kstock time, bw(2) robust small

OLS regression with robust standard errors
------------------------------------------
Heteroskedasticity and autocorrelation-consistent statistics
  kernel=Bartlett; bandwidth=2
  time variable (t):  year
  group variable (i): company

                                                    Number of obs =      200
                                                    F(  3,   196) =    79.84
                                                    Prob > F      =   0.0000
Total (centered) SS     =  9359943.917              Centered R2   =   0.8127
Total (uncentered) SS   =  13620706.07              Uncentered R2 =   0.8713
Residual SS             =   1753085.77              Root MSE      =    94.57
----------------------------------------------------------------------------
            |               Robust
    invest |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-----------+----------------------------------------------------------------
    mvalue |   .1163783   .0085026    13.69   0.000     .0996099    .1331467
    kstock |   .2213351   .0667831     3.31   0.001     .0896294    .3530408
      time |   .7737904   1.782941     0.43   0.665    -2.742421    4.290002
     _cons |  -49.14306   15.96811    -3.08   0.002    -80.63443   -17.65169
----------------------------------------------------------------------------

> Is still valid to use the "test" command for this pourpose?

Yes:

. test time

 ( 1)  time = 0

       F(  1,   196) =    0.19
            Prob > F =    0.6648

All of which is to say, download -ivreg2- from SSC. The -bw(2)- option is
Newey-West.

Hope all that helps. :)

CLIVE NICHOLAS        |t: 0(044)7903 397793
Politics              |e: [email protected]
Newcastle University  |http://www.ncl.ac.uk/geps

Whereever you go and whatever you do, just remember this. No matter how
many like you, admire you, love you or adore you, the number of people
turning up to your funeral will be largely determined by local weather
conditions.

*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2025 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index