<- See Stata 18's new features
Highlights
Effect size
Freeman–Tukey transformed proportion
Logit-transformed proportion
Raw (untransformed) proportion
Five types of study confidence intervals
Multiple methods to back-transform results into proportions
Scaled proportions
Full support of meta-analysis features
You asked, we listened! The meta suite now supports meta-analysis (MA) of one proportion, or prevalence. Multiple types of effect sizes, confidence intervals, and back-transformations are supported. All standard meta-analysis features such as forest plots and subgroup analysis are supported.
The traditional MA deals with two-sample binary or continuous data where the outcome of interest is measured across two groups typically labeled as the treatment and control groups. For example, an MA may compare the risk of contracting a disease (binary outcome) across two groups: the vaccinated and unvaccinated. Or maybe we want to contrast weight loss (continuous outcome) between two groups of subjects that followed different diets, say, keto versus intermittent fasting.
This two-group setting, however, is not always present in an MA. For example, the United Nations may conduct an MA to evaluate the prevalence of a certain disease across countries to allocate the proper resources to combat it. Or maybe the Department of Education performs an MA to assess the proportion of high school dropouts and uses its results to guide the budget for K–12 education. In both examples, we have one-sample binary data, in which the subjects belong to a single group and the interest lies in the proportion of individuals that experienced a certain event (contracting the disease in the first example and dropping out of high school in the second). In this setting, effect sizes such as Freeman–Tukey transformed proportions or logit-transformed proportions are typically used in the MA.
Meeting your future in-laws for the first time can be nerve-racking. You decided to impress your future mother-in-law, who plans on opening an online restaurant that delivers food across the United States. Being the statistician in the family, you suggested conducting an MA to assess the overall proportion of vegetarians (and vegans) across the seven regions of the U.S. Guided by the results of the MA, you hope to help the restaurant tailor more vegetarian-friendly recipes to specific regions of the U.S. For simplicity, assume you identified one study in each region to include in the MA.
. describe Contains data from vegetprop.dta Observations: 7 Fictional data of proportions of vegetarians across the 7 regions of the U.S. Variables: 6 24 Apr 2023 10:43
Variable Storage Display Value | ||||||
name type format label Variable label | ||||||
studylbl str21 %21s Study label | ||||||
region str15 %15s U.S. Region | ||||||
poptotal float %9.0g total population (in millions) | ||||||
ntotal float %9.0g Within-study sample size | ||||||
nveget inte %9.0g Number of vegetarians | ||||||
restaurant byte %9.0g No. of vegan and vegetarian restaurants per million people | ||||||
Variables nveget and ntotal represent the number of vegetarians and the total number of subjects in each study. By default, meta esize computes the Freeman–Tukey double-arcsine-transformed proportion for each study. This is a variance-stabilizing transformation and is particularly preferable when the proportions are close to 0 or 1.
. meta esize nveget ntotal, studylabel(studylbl) Meta-analysis setting information Study information No. of studies: 7 Study label: studylbl Study size: _meta_studysize Summary data: nveget ntotal Effect size Type: ftukeyprop Label: Freeman–Tukey's p Variable: _meta_es Precision Std. err.: _meta_se CI: [_meta_cil, _meta_ciu] CI level: 95% Model and method Model: Random effects Method: REML
You may specify the logit-transformed proportion as the effect size using option esize(logitprop). Because the variance of the logit-transformed proportion depends on the proportion itself, the MA of this effect size tends to assign artificially low weights for studies with proportions close to 0 or 1.
. meta update, esize(logitprop) -> meta esize nveget ntotal , esize(logitprop) studylabel(studylbl) Meta-analysis setting information from meta esize Study information No. of studies: 7 Study label: studylbl Study size: _meta_studysize Summary data: nveget ntotal Effect size Type: logitprop Label: Logit proportion Variable: _meta_es Zero-cells adj.: None; no zero cells Precision Std. err.: _meta_se CI: [_meta_cil, _meta_ciu] CI level: 95% Model and method Model: Random effects Method: REML
Perhaps you may wish to compute the untransformed proportions; however, this is recommended only if all the proportions reported by the studies are close to 0.5, which is not common.
. meta update, esize(proportion) (Output omitted)
Continuing with the first specification of meta esize, after computing the effect size of interest and declaring your data as meta data, you may use any MA technique. For example, to construct a forest plot, we type
. meta forest, proportion
The proportion option specifies that the results be reported as proportions instead of the default Freeman–Tukey transformed proportions. This is equivalent to applying the inverse Freeman–Tukey transformation using option transform(invftukey). The overall (mean) proportion of vegetarians is 0.06 with a CI of [0.04, 0.08].
You may also report your results as the number of vegetarians per 1,000 persons, say, using suboption scale() of option transform(). We will also show the corresponding region (variable region) of each study on the forest plot.
. meta forest _id _data region _plot _esci _weight, transform(invftukey, scale(1000)) esrefline insidemarker
The above forest plots reveal substantive differences among the proportions of vegetarians, with higher prevalence of vegetarians in the Pacific Coastal, New England, and Mid-Atlantic regions compared with the rest of the U.S. regions.
The meeting with the in-laws is around the corner. Luckily for you, backed with the above forest plot, you may advise your future mother-in-law to incorporate more vegetarian recipes on her menu for the aforementioned regions and color her impressed!
Learn more about other new features in meta-analysis.
Read more about meta-analysis in the Stata Meta-Analysis Reference Manual; see [META] meta.
View all the new features in Stata 18.