The Italian Stata Users Group meeting was Thursday, 16 November 2017 at the Hotel Brunelleschi, but you can view the program and presentation slides below.
Proceedings
| 9:30–10:30 | Session I: Invited Speaker
 
          Abstract:
		Stata 15 includes a newly documented option to export graphs 
		in scalable vector graphics format (SVG), which is a great storage 
		format because, instead of describing individual pixels, it 
		describes the shapes to be rendered by an application. While 
		other export formats also do this, SVG opens up many more options. 
		Unlike other vector formats used by Stata, SVG is supported by 
		modern web browsers. It is also relatively human-readable, because .svg 
		files are plain text XML code. This opens up a world of opportunity 
		to manipulate SVG files themselves and go beyond the graphics that Stata 
		can currently create.
		 
          This presentation gives an introduction to how SVG can be manipulated through several examples: invoking transparent elements 'by hand', hexagonal binning, embedding images to appear behind semitransparent graphs, and including interactive elements in graphs. I hope that this will encourage creative ideas from other users for further extending Stata graphics via SVG. Additional information: italy17_Morris.pdf 
 Tim Morris 
          University College London 
         | 
      
| 10:50–12:00 | Session II: Community-contributed commands and routines, I
 
          Abstract:
		Alongside instrumental variable (IV) and fixed effects (FE),
		the control function (CF) approach is the most widely used in
		production function estimation. Olley–Pakes (OP henceforth),
		Levinsohn–Petrin (LP), Ackerberg–Caves–Frazer (ACF) have
		all contributed to the field proposing two-step estimation
		procedures, while Wooldridge showed how to perform a
		consistent estimation within a single step GMM framework. In
		this presentation, we propose a new estimator, based on Wooldridge's,
		using dynamic panel instruments 'a la Blundell–Bond, and we
		evaluate its performance by Monte Carlo simulations. We also
		present a new Stata command prodest for production function
		estimation and show its main features and key strengths in a
		comparative analysis with other community-contributed Stata commands.
		Lastly, we provide evidence of the numerical challenges faced
		when using OP/LP estimators with ACF correction in empirical
		applications and document how the GMM estimates vary
		depending on the optimizer/starting points employed.
           
          Gabriele Rovigatti 
          University of Chicago Booth School of Business 
           Vincenzo Mollisi 
          Free University of Bolzano 
 
          Abstract:
                ddid estimates Average Treatment Effects (ATEs) when the treatment is binary
                and varying over time. Using ddid, the user can estimate the pre- and post-
                intervention effects by selecting the pre- and post-intervention periods,
                also by plotting the results in a easy-to-read graphical representation.
                Also, in order to evaluate the reliability of the causal results achieved by
                the user's specified model, ddid allows to test both the "common trend" assumption
                and the degree of "balancing" achieved by the user's specified model. Thus, the
                model estimated by ddid can be seen as a generalization of the difference-in-differences
                (DID) approach to the case of many pre- and post-intervention times.
           
          Additional information: italy17_Ventura.pdf 
 Marco Ventura 
          Istituto Nazionale di Statistica 
 
          Abstract:
		The dual nature of the propensity score manifests itself in both the 
		conditional probability of treatment assignment and covariate balancing 
		score. The standard approach to propensity score estimates exploits the 
		first feature, leaving the balancing properties to be checked after estimation. 
		Imai and Ratkovic (2014) also focus on the second feature and propose a covariate 
		balancing propensity score (CBPS) estimator that automatically balances the 
		conditional distribution of covariates. Being stated within a GMM framework, 
		CBPS is a simple way to obtain estimates of propensity or weights to be used 
		in subsequent estimations. Monte Carlo studies show its good performance among 
		others in reducing bias of treatment effects estimates. This presentation reviews the 
		method and introduces the Stata community-contributed package cbps, which 
		implements the estimator.
           
          Filip Premik 
          University of Minnesota 
         | 
      
| 12:00–1:00 | Session III: Exploiting the potential of Stata 15, I
 
          Abstract:
		Stata's estimation commands have evolved in how they account for groups in 
		the sample. Since the early days of Stata, fitting models with group-specific 
		parameters is simply a matter of using the clause to condition on group 
		membership. In Stata 12, we introduced sem and group analysis for structural 
		equation models (SEMs). Stata 15 introduces two types of group analysis for 	
		generalized SEMs. For observed groups, gsem has the new group() option. For 
		latent groups, gsem has the lclass() option and the ability to perform LCA.
           
          Additional information: italy17_Pitblado.pdf 
 Jeff Pitblado 
          StataCorp 
         | 
      
| 2:15–4:00 | Session IV: Exploiting the potential of Stata 15, II
 
          Abstract:
		Il Medication Possession Ratio (MPR) e la Proportion of Days Covered 
		(PDC) sono le più note misure di aderenza alle terapie farmacologiche
		derivanti dai flussi amministrativi sanitari. Entrambe esprimono in 
		termini percentuali quanta parte del follow-up individuale del paziente 
		è coperto dal farmaco in studio. L'obiettivo di questo contributo è fornire 
		alcuni consigli per calcolare tali indicatori di farmaco-aderenza usando il 
		software Stata, e presentare alcuni applicazioni pratiche su popolazioni di 
		pazienti affetti da patologia cardiovascolare.
		 
          (Presentation to be given in Italian.) Additional information: italy17_Lenzi.pdf 
 Jacopo Lenzi 
          Alma Mater Studiorum University of Bologna 
 
          Abstract:
		Utilizzando i dati di un registro di patologia si possono realizzare studi 
		longitudinali che indagano i determinanti di uno o più esiti di interesse per 
		la patologia. In particolare, si può usare una coorte estratta dal registro per 
		eseguire la validazione temporale di un modello predittivo che era stato 
		sviluppato a partire da una coorte di pazienti dello stesso registro arruolati 
		in un periodo precedente. Nella presentazione verrà illustrato il programma 
		Stata che è stato scritto per realizzare un matching a due step, deterministico e 
		probabilistico, con il quale ottenere due coorti omogenee di pazienti in cui
		confrontare gli esiti di patologia.  
                 
          (Presentation to be given in Italian.) Additional information: italy17_Gibertoni.pdf 
 Dino Gibertoni 
          Alma Mater Studiorum University of Bologna 
 
          Abstract:
		Il 23 giugno 2016 si è tenuto il referendum relativo alla permanenza della Gran
		Bretagna nell'Unione Europea ("British exit" o "Brexit").
 
          Già nel 1975 i cittadini britannici erano stati chiamati a esprimersi in merito a alla permanenza della Gran Bretagna nell'allora Comunità economica europea. L'affluenza al c.d. "Common market referendum" era stata circa del 65% e il Remain si era affermato in maniera netta (67%) in tutte le circoscrizioni, restituendo l'immagine di una nazione fortemente europeista. I risultati del referendum del giugno 2016 sono stati diametralmente opposti. Anche in questo caso l'affluenza è stata molto elevata (72%), ma a prevalere è stato il Leave con il 52% delle preferenze. Viene fuori l'immagine di un Paese spaccato in due, diviso fra europeisti e antieuropeisti. Cos'è cambiato? Cosa ha spinto i cittadini britannici a esprimersi a favore dell'uscita dall'Unione europea? Quali variabili hanno giocato un ruolo determinante? L'obiettivo di questo lavoro è evidenziare se il voto del 23 giugno sia stato non solo espressione dell'opinione dei cittadini britannici riguardo all'Unione Europea, ma anche e soprattutto la chiara manifestazione di un malessere legato all'influenza di altri fattori, quali la crisi economica e il fenomeno della migrazione, che possono quindi fornire una possibile via per comprendere le ragioni del Leave. In quest'ottica, i risultati elettorali delle local authorities in cui è stato suddiviso il territorio britannico sono stati messi in relazione con una serie di variabili di natura demografica, economica e sociale. Le variabili sono state raccolte o costruite a partire dalle banche dati ufficiali disponibili, in particolare utilizzando le indagini campionarie realizzate da Office for National Statistics, che restituiscono il quadro del Paese al 30 giugno di ogni anno. L'analisi realizzata in questo lavoro fa riferimento alla struttura demografica, economica e sociale del Paese a metà 2015. (Presentation to be given in Italian.) Additional information: italy17_Alaimo.pdf 
 Salvatore Leonardo Alaimo 
          Sapienza University of Rome 
 
          Abstract:
		There is wide discussion about the relationship between marriage timing and 
		socioeconomic factors. However, empirical evidence on the age at first marriage 
		for women, especially in traditional societies where arranged marriages are common 
		is still limited. We use a nationally representative Qatari Women Survey dataset 
		to test the relationship between ideal age at first marriage and socioeconomic 
		factors. Given the presence of heterogeneity, in preferential age at first marriage 
		for young women, we apply the quantile regression method to make inferences. Using 
		the quantile regression methodology, we find that the influence of socioeconomic 
		factors differs across the ideal age distribution. In particular, there is a positive 
		relationship between the ideal age at first marriage and post-secondary education. 
           
          Brian W. Mandikiana  
          Qatar University 
          Mahjabeen Ramzan  
          Qatar University 
         | 
      
| 4:15–5:00 | Session V: Community-contributed commands and routines, II
 
          Abstract:
                The Stata command xtarsim, which I developed in 2005, simulates dynamic
                panel-data models with exogenous regressors and iid errors. I have now
                extended the command to simulating models with different types of
                endogenous or predetermined regressors and with MA (1) errors. This presentation
                illustrates the new version of xtarsim and presents Monte Carlo applications.
           
          Giovanni S.F. Bruno 
          Bocconi University 
 
          Abstract:
		Using the Stata entity names in patents and trademarks have been linked by 
		means of a matching algorithm which accounts for differences due to the position 
		of the same word between otherwise identical strings. In particular, I have taken 
		into consideration the string similarity J index proposed by Thoma, Torrisi, 
		Gambardella, Guellec, Hall and Harhoff (2010), which computes the fraction of 
		common words after breaking up the strings into words at the blank spaces. 
           
          Additional information: italy17_Thoma.pdf 
 Grid Thoma 
          University of Camerino 
         | 
      
| 5:00–5:15 | Session VI: Report to users & Wishes and grumbles | 
      
Workshop: Using simulation studies to evaluate statistical methods
Simulation studies are an invaluable tool for statistical research. They help us understand the properties of statistical methods and compare different methods. To perform a meaningful simulation study, careful thinking needs to be put into planning, coding, analysis, and interpretation. This course will help participants to
- understand the rationale for simulation;
 - appreciate the importance of careful planning and have a practical framework for planning their own simulation studies;
 - have the tools to code and debug simple simulation studies in Stata;
 - know how to analyze simulation studies producing estimates of uncertainty; and
 - present methods and results for publication.
 
General information
Examples will be taken from the instructor's experiences in medical statistics. The principles are the same for simulation studies in other applied areas, but the examples may be less relevant.
Participants should be familiar with Stata. For example, they should know how to generate data, run regression commands, and produce simple graphs.
Organizers
Scientific committee
          Una-Louise Bell
	  TStat S.r.l.
        
          Rino Bellocco
	  Università degli Studi di Milano—Bicocca
        
          Giovanni Capelli
	  Università degli Studi di Cassino
        
          Marcello Pagano
	  Harvard University
        
          Maurizio Pisati
	  Università degli Studi di Milano—Bicocca
        
Logistics organizer
    The logistics organizer for the 2017 Italian Stata Users Group meeting is TStat S.r.l., the distributor of Stata in Italy.
View the proceedings of previous Stata Users Group meetings.