The Italian Stata Users Group meeting was Thursday, 16 November 2017 at the Hotel Brunelleschi, but you can view the program and presentation slides below.
Proceedings
9:30–10:30 | Session I: Invited Speaker
Abstract:
Stata 15 includes a newly documented option to export graphs
in scalable vector graphics format (SVG), which is a great storage
format because, instead of describing individual pixels, it
describes the shapes to be rendered by an application. While
other export formats also do this, SVG opens up many more options.
Unlike other vector formats used by Stata, SVG is supported by
modern web browsers. It is also relatively human-readable, because .svg
files are plain text XML code. This opens up a world of opportunity
to manipulate SVG files themselves and go beyond the graphics that Stata
can currently create.
This presentation gives an introduction to how SVG can be manipulated through several examples: invoking transparent elements 'by hand', hexagonal binning, embedding images to appear behind semitransparent graphs, and including interactive elements in graphs. I hope that this will encourage creative ideas from other users for further extending Stata graphics via SVG. Additional information: italy17_Morris.pdf
Tim Morris
University College London
|
10:50–12:00 | Session II: Community-contributed commands and routines, I
Abstract:
Alongside instrumental variable (IV) and fixed effects (FE),
the control function (CF) approach is the most widely used in
production function estimation. Olley–Pakes (OP henceforth),
Levinsohn–Petrin (LP), Ackerberg–Caves–Frazer (ACF) have
all contributed to the field proposing two-step estimation
procedures, while Wooldridge showed how to perform a
consistent estimation within a single step GMM framework. In
this presentation, we propose a new estimator, based on Wooldridge's,
using dynamic panel instruments 'a la Blundell–Bond, and we
evaluate its performance by Monte Carlo simulations. We also
present a new Stata command prodest for production function
estimation and show its main features and key strengths in a
comparative analysis with other community-contributed Stata commands.
Lastly, we provide evidence of the numerical challenges faced
when using OP/LP estimators with ACF correction in empirical
applications and document how the GMM estimates vary
depending on the optimizer/starting points employed.
Gabriele Rovigatti
University of Chicago Booth School of Business
Vincenzo Mollisi
Free University of Bolzano
Abstract:
ddid estimates Average Treatment Effects (ATEs) when the treatment is binary
and varying over time. Using ddid, the user can estimate the pre- and post-
intervention effects by selecting the pre- and post-intervention periods,
also by plotting the results in a easy-to-read graphical representation.
Also, in order to evaluate the reliability of the causal results achieved by
the user's specified model, ddid allows to test both the "common trend" assumption
and the degree of "balancing" achieved by the user's specified model. Thus, the
model estimated by ddid can be seen as a generalization of the difference-in-differences
(DID) approach to the case of many pre- and post-intervention times.
Additional information: italy17_Ventura.pdf
Marco Ventura
Istituto Nazionale di Statistica
Abstract:
The dual nature of the propensity score manifests itself in both the
conditional probability of treatment assignment and covariate balancing
score. The standard approach to propensity score estimates exploits the
first feature, leaving the balancing properties to be checked after estimation.
Imai and Ratkovic (2014) also focus on the second feature and propose a covariate
balancing propensity score (CBPS) estimator that automatically balances the
conditional distribution of covariates. Being stated within a GMM framework,
CBPS is a simple way to obtain estimates of propensity or weights to be used
in subsequent estimations. Monte Carlo studies show its good performance among
others in reducing bias of treatment effects estimates. This presentation reviews the
method and introduces the Stata community-contributed package cbps, which
implements the estimator.
Filip Premik
University of Minnesota
|
12:00–1:00 | Session III: Exploiting the potential of Stata 15, I
Abstract:
Stata's estimation commands have evolved in how they account for groups in
the sample. Since the early days of Stata, fitting models with group-specific
parameters is simply a matter of using the clause to condition on group
membership. In Stata 12, we introduced sem and group analysis for structural
equation models (SEMs). Stata 15 introduces two types of group analysis for
generalized SEMs. For observed groups, gsem has the new group() option. For
latent groups, gsem has the lclass() option and the ability to perform LCA.
Additional information: italy17_Pitblado.pdf
Jeff Pitblado
StataCorp
|
2:15–4:00 | Session IV: Exploiting the potential of Stata 15, II
Abstract:
Il Medication Possession Ratio (MPR) e la Proportion of Days Covered
(PDC) sono le più note misure di aderenza alle terapie farmacologiche
derivanti dai flussi amministrativi sanitari. Entrambe esprimono in
termini percentuali quanta parte del follow-up individuale del paziente
è coperto dal farmaco in studio. L'obiettivo di questo contributo è fornire
alcuni consigli per calcolare tali indicatori di farmaco-aderenza usando il
software Stata, e presentare alcuni applicazioni pratiche su popolazioni di
pazienti affetti da patologia cardiovascolare.
(Presentation to be given in Italian.) Additional information: italy17_Lenzi.pdf
Jacopo Lenzi
Alma Mater Studiorum University of Bologna
Abstract:
Utilizzando i dati di un registro di patologia si possono realizzare studi
longitudinali che indagano i determinanti di uno o più esiti di interesse per
la patologia. In particolare, si può usare una coorte estratta dal registro per
eseguire la validazione temporale di un modello predittivo che era stato
sviluppato a partire da una coorte di pazienti dello stesso registro arruolati
in un periodo precedente. Nella presentazione verrà illustrato il programma
Stata che è stato scritto per realizzare un matching a due step, deterministico e
probabilistico, con il quale ottenere due coorti omogenee di pazienti in cui
confrontare gli esiti di patologia.
(Presentation to be given in Italian.) Additional information: italy17_Gibertoni.pdf
Dino Gibertoni
Alma Mater Studiorum University of Bologna
Abstract:
Il 23 giugno 2016 si è tenuto il referendum relativo alla permanenza della Gran
Bretagna nell'Unione Europea ("British exit" o "Brexit").
Già nel 1975 i cittadini britannici erano stati chiamati a esprimersi in merito a alla permanenza della Gran Bretagna nell'allora Comunità economica europea. L'affluenza al c.d. "Common market referendum" era stata circa del 65% e il Remain si era affermato in maniera netta (67%) in tutte le circoscrizioni, restituendo l'immagine di una nazione fortemente europeista. I risultati del referendum del giugno 2016 sono stati diametralmente opposti. Anche in questo caso l'affluenza è stata molto elevata (72%), ma a prevalere è stato il Leave con il 52% delle preferenze. Viene fuori l'immagine di un Paese spaccato in due, diviso fra europeisti e antieuropeisti. Cos'è cambiato? Cosa ha spinto i cittadini britannici a esprimersi a favore dell'uscita dall'Unione europea? Quali variabili hanno giocato un ruolo determinante? L'obiettivo di questo lavoro è evidenziare se il voto del 23 giugno sia stato non solo espressione dell'opinione dei cittadini britannici riguardo all'Unione Europea, ma anche e soprattutto la chiara manifestazione di un malessere legato all'influenza di altri fattori, quali la crisi economica e il fenomeno della migrazione, che possono quindi fornire una possibile via per comprendere le ragioni del Leave. In quest'ottica, i risultati elettorali delle local authorities in cui è stato suddiviso il territorio britannico sono stati messi in relazione con una serie di variabili di natura demografica, economica e sociale. Le variabili sono state raccolte o costruite a partire dalle banche dati ufficiali disponibili, in particolare utilizzando le indagini campionarie realizzate da Office for National Statistics, che restituiscono il quadro del Paese al 30 giugno di ogni anno. L'analisi realizzata in questo lavoro fa riferimento alla struttura demografica, economica e sociale del Paese a metà 2015. (Presentation to be given in Italian.) Additional information: italy17_Alaimo.pdf
Salvatore Leonardo Alaimo
Sapienza University of Rome
Abstract:
There is wide discussion about the relationship between marriage timing and
socioeconomic factors. However, empirical evidence on the age at first marriage
for women, especially in traditional societies where arranged marriages are common
is still limited. We use a nationally representative Qatari Women Survey dataset
to test the relationship between ideal age at first marriage and socioeconomic
factors. Given the presence of heterogeneity, in preferential age at first marriage
for young women, we apply the quantile regression method to make inferences. Using
the quantile regression methodology, we find that the influence of socioeconomic
factors differs across the ideal age distribution. In particular, there is a positive
relationship between the ideal age at first marriage and post-secondary education.
Brian W. Mandikiana
Qatar University
Mahjabeen Ramzan
Qatar University
|
4:15–5:00 | Session V: Community-contributed commands and routines, II
Abstract:
The Stata command xtarsim, which I developed in 2005, simulates dynamic
panel-data models with exogenous regressors and iid errors. I have now
extended the command to simulating models with different types of
endogenous or predetermined regressors and with MA (1) errors. This presentation
illustrates the new version of xtarsim and presents Monte Carlo applications.
Giovanni S.F. Bruno
Bocconi University
Abstract:
Using the Stata entity names in patents and trademarks have been linked by
means of a matching algorithm which accounts for differences due to the position
of the same word between otherwise identical strings. In particular, I have taken
into consideration the string similarity J index proposed by Thoma, Torrisi,
Gambardella, Guellec, Hall and Harhoff (2010), which computes the fraction of
common words after breaking up the strings into words at the blank spaces.
Additional information: italy17_Thoma.pdf
Grid Thoma
University of Camerino
|
5:00–5:15 | Session VI: Report to users & Wishes and grumbles |
Workshop: Using simulation studies to evaluate statistical methods
Simulation studies are an invaluable tool for statistical research. They help us understand the properties of statistical methods and compare different methods. To perform a meaningful simulation study, careful thinking needs to be put into planning, coding, analysis, and interpretation. This course will help participants to
- understand the rationale for simulation;
- appreciate the importance of careful planning and have a practical framework for planning their own simulation studies;
- have the tools to code and debug simple simulation studies in Stata;
- know how to analyze simulation studies producing estimates of uncertainty; and
- present methods and results for publication.
General information
Examples will be taken from the instructor's experiences in medical statistics. The principles are the same for simulation studies in other applied areas, but the examples may be less relevant.
Participants should be familiar with Stata. For example, they should know how to generate data, run regression commands, and produce simple graphs.
Organizers
Scientific committee
Una-Louise Bell
TStat S.r.l.
Rino Bellocco
Università degli Studi di Milano—Bicocca
Giovanni Capelli
Università degli Studi di Cassino
Marcello Pagano
Harvard University
Maurizio Pisati
Università degli Studi di Milano—Bicocca
Logistics organizer
The logistics organizer for the 2017 Italian Stata Users Group meeting is TStat S.r.l., the distributor of Stata in Italy.
View the proceedings of previous Stata Users Group meetings.