Speaker: Mark S. Pearce, University of Newcastle upon Tyne |
Geographically weighted regression is a method for exploring spatial nonstationarity. Spatial nonstationarity being a condition in which a simple "global" regression model cannot adequately explain the relationships between some sets of variables over a geographical area. Instead, the nature of the model should alter over space to reflect the structure within the data. For example does the risk of disease in relation to a risk factor remain constant across a geographical area, or is the relationship stronger at certain points within the area.
Brunsdon et al. (1996) developed geographically weighted regression, which attempts to capture this spatial variation by calibrating a multiple regression model which allows different relationships between variables to exist at different points in space.
The basic idea of geographically weighted regression is that a regression model is fitted at each point in the data, weighting all observations by a function of distance from that point. This corresponds to the idea that observations sampled near to the observation where the regression is centred have more influence on the resulting regression parameters at that point than observations further away. This then produces a set of parameter estimates at each point in the defined geographical area. These parameter estimates can then be mapped using GIS software to identify where the relationships between variables vary, providing a useful form of exploratory analysis. Using Monte Carlo methods 2 hypothesis tests can be carried out:
I will present how this method can be carried out in Stata using the ado files gwr and gwrgrid which both apply geographically weighted regression to a dataset containing geographical reference points. The only difference between the two ado files being that gwrgrid places a grid over the geographical area and carries out regressions centred at each grid centroid, whereas gwr carries out regressions centred at each point in the data.
The code in these ado files is based on the paper by Brunsdon et al., and a FORTRAN program written by Brunsdon et al., and has been extended to any form of generalized linear model by relying heavily on the existing glm function in Stata.
The technique and programs, and the options included with them, will be demonstrated on the example given by Brunsdon et al. — a ward-level dataset from the 1991 UK census relating car ownership rates to social class and male unemployment in the county of Tyne & Wear in north-east England.
Learn
Free webinars
NetCourses
Classroom and web training
Organizational training
Video tutorials
Third-party courses
Web resources
Teaching with Stata
© Copyright 1996–2024 StataCorp LLC. All rights reserved.
×
We use cookies to ensure that we give you the best experience on our website—to enhance site navigation, to analyze usage, and to assist in our marketing efforts. By continuing to use our site, you consent to the storing of cookies on your device and agree to delivery of content, including web fonts and JavaScript, from third party web services.
Cookie Settings
Last updated: 16 November 2022
StataCorp LLC (StataCorp) strives to provide our users with exceptional products and services. To do so, we must collect personal information from you. This information is necessary to conduct business with our existing and potential customers. We collect and use this information only where we may legally do so. This policy explains what personal information we collect, how we use it, and what rights you have to that information.
These cookies are essential for our website to function and do not store any personally identifiable information. These cookies cannot be disabled.
This website uses cookies to provide you with a better user experience. A cookie is a small piece of data our website stores on a site visitor's hard drive and accesses each time you visit so we can improve your access to our site, better understand how you use our site, and serve you content that may be of interest to you. For instance, we store a cookie when you log in to our shopping cart so that we can maintain your shopping cart should you not complete checkout. These cookies do not directly store your personal information, but they do support the ability to uniquely identify your internet browser and device.
Please note: Clearing your browser cookies at any time will undo preferences saved here. The option selected here will apply only to the device you are currently using.