A stationary process can be decomposed into random components that occur at different frequencies. The spectral density of a stationary process describes the relative importance of these random components.
Stata's psdensity estimates the spectral density of a stationary process using the parameters of a previously estimated parametric model.
Consider the changes in the number of manufacturing employees in the United States:
. webuse manemp2 (FRED data: Number of manufacturing employees in U.S.) . tsline D.manemp
The horizontal line corresponds to the mean. There appear to be more runs above the mean, and more runs below the mean, than we would expect from a series without autocorrelation. These runs suggest positive autocorrelation.
Fitting these data to a first-order autoregressive process confirms our suspicions:
. arima D.manemp, ar(1) nolog ARIMA regression Sample: 1950m2 thru 2011m2 Number of obs = 733 Wald chi2(1) = 645.44 Log likelihood = -870.5939 Prob > chi2 = 0.0000
OPG | ||
D.manemp | Coefficient std. err. z P>|z| [95% conf. interval] | |
manemp | ||
_cons | -.0198164 .0661281 -0.30 0.764 -.149425 .1097923 | |
ARMA | ||
ar | ||
L1. | .517689 .020377 25.41 0.000 .4777509 .5576271 | |
/sigma | .7933988 .0080698 98.32 0.000 .7775824 .8092153 | |
The statistically significant estimate of 0.518 for the autoregressive coefficient indicates that there is an important amount of positive autocorrelation in this series.
Next we can use psdensity to estimate the spectral density of the process implied by the estimated parameters.
. psdensity density omega . twoway line density omega
The above graph is typical of a spectral density of an AR(1) process with a positive coefficient. The curve is highest at frequency 0, and it tapers off toward zero or a positive asymptote. This estimated spectral density tells us that the low-frequency random components are the most important random components of an AR(1) process with a positive autoregressive coefficient.
Explore more time-series features in Stata.
Learn
Free webinars
NetCourses
Classroom and web training
Organizational training
Video tutorials
Third-party courses
Web resources
Teaching with Stata
© Copyright 1996–2024 StataCorp LLC. All rights reserved.
×
We use cookies to ensure that we give you the best experience on our website—to enhance site navigation, to analyze usage, and to assist in our marketing efforts. By continuing to use our site, you consent to the storing of cookies on your device and agree to delivery of content, including web fonts and JavaScript, from third party web services.
Cookie Settings
Last updated: 16 November 2022
StataCorp LLC (StataCorp) strives to provide our users with exceptional products and services. To do so, we must collect personal information from you. This information is necessary to conduct business with our existing and potential customers. We collect and use this information only where we may legally do so. This policy explains what personal information we collect, how we use it, and what rights you have to that information.
These cookies are essential for our website to function and do not store any personally identifiable information. These cookies cannot be disabled.
This website uses cookies to provide you with a better user experience. A cookie is a small piece of data our website stores on a site visitor's hard drive and accesses each time you visit so we can improve your access to our site, better understand how you use our site, and serve you content that may be of interest to you. For instance, we store a cookie when you log in to our shopping cart so that we can maintain your shopping cart should you not complete checkout. These cookies do not directly store your personal information, but they do support the ability to uniquely identify your internet browser and device.
Please note: Clearing your browser cookies at any time will undo preferences saved here. The option selected here will apply only to the device you are currently using.