Traditionally, we select a model and perform inference and prediction conditional on this model. Our results typically do not account for the uncertainty in selecting a model and thus may be overly optimistic. They may even be incorrect if our selected model is substantially different from the true data-generating model (DGM). In some applications, we may have strong theoretical or empirical evidence about the DGM. In other applications, usually of complex and unstable natures, such as those in economics, psychology, and epidemiology, choosing one reliable model can be difficult.
Model averaging is a statistical approach that accounts for model uncertainty in your analysis. Instead of relying on just one model, model averaging averages results over multiple plausible models based on the observed data. In BMA, the "plausibility" of the model is described by the posterior model probability (PMP), which is determined using the fundamental Bayesian principles—the Bayes theorem—and applied universally to all data analyses.
BMA can be used to account for model uncertainty when estimating model parameters and predicting new observations to avoid overly optimistic conclusions. It is particularly useful in applications with several plausible models, where there is no one definitive reason to choose a particular model over the others. But even if choosing a single model is the end goal, you can find BMA beneficial. It provides a principled way to identify important models and predictors within the considered classes of models. Its framework allows you to learn about interrelations between different predictors in terms of their tendency to appear in a model together, separately, or independently. It can be used to evaluate the sensitivity of the final results to various assumptions about the importance of different models and predictors. And it provides optimal predictions in the log-score sense.
To learn more about BMA, see [BMA] Intro. See an overview of BMA features and quick examples of BMA features.
Learn
Free webinars
NetCourses
Classroom and web training
Organizational training
Video tutorials
Third-party courses
Web resources
Teaching with Stata
© Copyright 1996–2024 StataCorp LLC. All rights reserved.
×
We use cookies to ensure that we give you the best experience on our website—to enhance site navigation, to analyze usage, and to assist in our marketing efforts. By continuing to use our site, you consent to the storing of cookies on your device and agree to delivery of content, including web fonts and JavaScript, from third party web services.
Cookie Settings
Last updated: 16 November 2022
StataCorp LLC (StataCorp) strives to provide our users with exceptional products and services. To do so, we must collect personal information from you. This information is necessary to conduct business with our existing and potential customers. We collect and use this information only where we may legally do so. This policy explains what personal information we collect, how we use it, and what rights you have to that information.
These cookies are essential for our website to function and do not store any personally identifiable information. These cookies cannot be disabled.
This website uses cookies to provide you with a better user experience. A cookie is a small piece of data our website stores on a site visitor's hard drive and accesses each time you visit so we can improve your access to our site, better understand how you use our site, and serve you content that may be of interest to you. For instance, we store a cookie when you log in to our shopping cart so that we can maintain your shopping cart should you not complete checkout. These cookies do not directly store your personal information, but they do support the ability to uniquely identify your internet browser and device.
Please note: Clearing your browser cookies at any time will undo preferences saved here. The option selected here will apply only to the device you are currently using.