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Clustered errors: Why are they important?

Clustered errors in your data

1. Data on firms operating in different sectors:

• Errors are (probably) correlated within industries.

2. Data on high school students in the USA:

• Errors are (probably) correlated within schools.

3. Panel data on individuals:

• For each individual, errors are (probably) serially correlated.

4. Experiments with treatment at an aggregated level.

• Errors are (probably) correlated within such levels.
Example: States changing minimum wage.



Cluster–robust inference in Stata

Clustered errors: Why are they important?

Linear model with clustered errors

Consider the model:

yig = Xigβ + εig

where,

yig : outcome for observation i in cluster g ;

Xig : vector of covariates for observation i in cluster g ;

εig : error term for observation i in cluster g ;

β: coefficients of interest;

g = 1, 2, . . .G.
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Clustered errors: Why are they important?

Clustered errors

Errors between clusters are uncorrelated:

Cor
(
εig , εj g̃

)
= 0

Errors within the same cluster are (possibly) correlated:

Cor
(
εig , εjg

)
̸= 0

Thus, we are relaxing the assumption of i.i.d. errors.
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Clustered errors: Why are they important?

Clustered data complicates inference

Problem: CI’s assuming i.i.d don’t have the right coverage

• Coverage is (typically) less than 95%

• SE are (typically) too small

• May lead to overreject null hypotheses (false positives).

Let’s see this in some Monte Carlo simulations.



Cluster–robust inference in Stata

Clustered errors: Why are they important?

Linear experimental design

Data generating process:

yig = 1 + xig + zig + Tg + µig + νg

where,

yig : outcome for observation i in cluster g ;

xig , zig : control variables, N(0, 3) and χ2(7) respectively.

Obs = 1000.

g : observations randomly assigned among 100 clusters;

Tg : 33 clusters randomly assigned to treatment (Tg = 1)



Cluster–robust inference in Stata

Clustered errors: Why are they important?

Clustered errors

Data generating process:

yig = 1 + xig + zig + Tg + µig + νg

where,

νg : clustered component of error term, N(0, 0.5);

µig : individual component of error term, N(0, 0.5).

⇒ Errors are correlated within clusters.
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Clustered errors: Why are they important?

Monte Carlo simulations

Procedure:

1. Simulate the DGP.

2. regress y x z treat

3. Store coeffficient for treat: [beta]

4. Check if CI for treat contains 1

5. Repeat 1000 times steps 1-4.

6. Count number of times 1 was contained in CI.
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Clustered errors: Why are they important?

Results – Monte Carlo simulations

Remarks:

1. Coverage is just 56.4% (vs. 95% nominal size)

2. Estimator is still consistent.

3. CI’s are too narrow.
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Clustered errors: Why are they important?

Controlling for cluster dummies is not the solution

Procedure:

1. Simulate the DGP.

2. regress y x z treat i.cvar

3. Store coeffficient for treat: [beta]

4. Check if CI for treat contains 1

5. Repeat 1000 times steps 1-4.

6. Count number of times 1 was contained in CI.
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Clustered errors: Why are they important?

Results – Monte Carlo controlling for cluster dummies

Remarks:

1. Coverage fell to 47.1% (vs. 95% nominal size)

2. Inefficient: estimating coefficients of irrelevant variables.
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Clustered errors: Why are they important?

Nonlinear experimental design

Data generating process (Probit model):

y∗ig = 1 + xig + zig + Tg − µig − νg

yig = 1{y∗ig ≥ 0}

where,

yig : outcome for observation i in cluster g ;

xig , zig : control variables, N(0, 3) and χ2(7) respectively.

Obs = 100000

g : observations randomly assigned among 100 clusters;

Tg : 33 clusters randomly assigned to treatment (Tg = 1)
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Clustered errors: Why are they important?

Clustered errors

Data generating process:

y∗ig = 1 + xig + zig + Tg − µig − νg

yig = 1{y∗ig ≥ 0}

where,

νg : clustered component of error term, N(0, 0.5);

µig : individual component of error term, N(0, 0.5).



Cluster–robust inference in Stata

Clustered errors: Why are they important?

Monte Carlo simulations

Procedure:

1. Simulate the DGP.

2. probit y x z treat

3. Store coefficient for treat: [beta]

4. Check if CI for treat contains 1

5. Repeat 1000 times steps 1-4.

6. Count number of times 1 was contained in CI.



Cluster–robust inference in Stata

Clustered errors: Why are they important?

Results – Monte Carlo nonlinear experiment

Remarks:

1. Coverage is just 55.8% (vs. 95% nominal size)

2. Estimator is still consistent.

3. CI’s are too narrow.
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Clustered errors: Why are they important?

Solutions

1. Cluster–robust variance estimator:

• Option vce(cluster cvarlist)
Liang and Zeger (1986) ....

• Adjust degrees of freedom: vce(hc2 cvar, dfadjust) [Stata 18]
Bell and McCaffrey (2002)

2. Wild cluster bootstrap [Stata 18]
Cameron, Gelbach, and Miller (2008)
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The cluster–robust variance estimator (CRVE)

Cluster–robust variance estimator (CRVE)

CI’s can be corrected using the CRVE:

V̂ =
G (N − 1)

(G − 1)(N − k)

(
XX ′)−1

(
G∑

g=1

X ′
g ϵ̂g ϵ̂

′
gXg

)(
XX ′)−1

The 95% corrected CI for βk :
[
β̂k − 1.96

√
V̂k,k , β̂k +1.96

√
V̂k,k

]
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The cluster–robust variance estimator (CRVE)

Implementation – option vce(cluster)

Example:

estimation command ..., vce(cluster cvarlist)

Check availability:

help estimation command
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The cluster–robust variance estimator (CRVE)

Monte Carlo simulations – Linear experimental design

yig = 1 + xig + zig + Tg + µig + νg

Procedure:

1. Simulate the DGP.

2. regress y x z treat, vce(cluster cvar)

3. Store coeffficient for treatment: [beta]

4. Check if CI for treatment contains 1

5. Repeat 1000 times steps 1-4.

6. Count number of times 1 was contained in CI.
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The cluster–robust variance estimator (CRVE)

Results – Monte Carlo CRVE

Remarks:

1. Coverage is 95.9% (vs. 95% nominal size)



Cluster–robust inference in Stata

The cluster–robust variance estimator (CRVE)

Monte Carlo simulations – Probit experimental design

y∗ig = 1 + xig + zig + Tg − µig − νg

yig = 1{y∗ig ≥ 0}

Procedure:

1. Simulate the DGP.

2. probit y x z treat, vce(cluster cvar)

3. Store coeffficient for treat: [beta]

4. Check if CI for treat contains 1

5. Repeat 1000 times steps 1-4.

6. Count number of times 1 was contained in CI.
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The cluster–robust variance estimator (CRVE)

Results – Monte Carlo Probit CRVE

Remarks:

1. Coverage is 92.9% (vs. 95% nominal size)
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The cluster–robust variance estimator (CRVE)

CRVE typically increases SE, improving CI coverage

Example: Linear regression with and without CRVE
(wage work.dta)
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The cluster–robust variance estimator (CRVE)

Limitations of CRVE

The CRVE can work well, but the asymptotics depend on G .

The CRVE can perform poorly when:

1. The number of clusters G is small.

2. Cluster have very different sizes.

Again, let see it in a Monte Carlo simulation.
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The cluster–robust variance estimator (CRVE)

Linear experimental design with few clusters

Data generating process:

yig = 1 + xig + zig + Tg + µig + νg

where,

yig : outcome for observation i in cluster g ;

xig , zig : control variables, N(0, 3) and χ2(7) respectively.

Obs = 1000.

g : observations randomly assigned among 21 clusters;

Tg : 7 clusters randomly assigned to treatment (Tg = 1)
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The cluster–robust variance estimator (CRVE)

Results – Monte Carlo few clusters

Remarks:

1. Coverage of 87.9% (vs. 95% nominal size)
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Alternatives when the assumptions of the CRVE fail

Adjusted degrees of freedom for vce(hc2)

Solution 1: Adjusted degrees of freedom (DoF)

Bell and McCaffrey (2002): adjust DoF based on cvar

• Improves CI coverage when clusters are very few.

hc2: requests more conservative estimator for residuals

Implementation:

estimation command ..., vce(hc2 cvar, dfadjust)

Check availability:

help estimation command

Let’s see it in action in a Monte Carlo simulation.
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Alternatives when the assumptions of the CRVE fail

Adjusted degrees of freedom for vce(hc2)

Back to the linear experimental design (7 clusters)

yig = 1 + xig + zig + Tg + µig + νg

Procedure:

1. Simulate the DGP.

2. regress y x z treat, vce(hc2 cvar, dfadjust)

3. Store coeffficient for treat: [beta]

4. Check if CI for treat contains 1

5. Repeat 1000 times steps 1-4.

6. Count number of times 1 was contained in CI.
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Alternatives when the assumptions of the CRVE fail

Adjusted degrees of freedom for vce(hc2)

Results – Monte Carlo with few clusters, adjusted DoF

Remarks:

1. Coverage of 97.8% (vs. 95% nominal size)
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

Solution 2: The wildbootstrap command

Syntax:
wildbootstrap estimator depvar [indepvars] [if] [in] [weight] [, options]

estimator:

• regress

• areg

• xtreg (fixed-effects model only; no need to specify fe option)
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

Quick Start

Estimate the WCB p-value and CI for the coefficient on x1 in a
linear regression of y on x1 with clusters identified in cvar

wildbootstrap regress y x1, cluster(cvar)
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

Wild cluster bootstrap algorithm

Consider the model:

y =


y1
y2
...
yG

 = Xβ + ϵ =


X1

X2
...

XG



β1
β2
...
βk

+


ϵ1
ϵ2
...
ϵG


where,

yg : vector of outcomes for cluster g ,

Xg : vector of covariates for cluster g ,

εg : vector of errors for cluster g ,

β: coefficients of interest.
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

The wild cluster restricted bootstrap (WCRB)

The WCRB algorithm consists of 4 steps:

Suppose, for example, we want to test H0 : βk = 0.

1. Re-estimate the linear model with the restriction βk = 0.
β̃: restricted estimated coefficients
ϵ̃: restricted estimated residuals
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

WCRB algorithm

2. Create a bootstrap replication b (repeat B times):

2.1 Generate random variable νbg for each cluster g :

Distribution specified in errorweight()

E.g. rademacher: −1 or +1 with equal probability

2.2 Generate a new dependent variable ybig:

yb
ig = Xig β̃ + ϵ̃igν

b
g .

2.3 Re-estimate the model using variable yb
ig on the LHS.

2.4 Calculate the t-statistic tbk =
β̂b
k√
V̂ b
k,k

β̂b
k : estimated coefficient in bootstrap replication.

V̂ b
k,k : CRVE for k-th coefficient in the bootstrap replication.
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

WCRB algorithm

Suppose HA : βk ̸= 0.

3. Calculate p-values depending on the the t-statistics’
distribution:

• Symmetric around 0: pS = 1
B

∑B
b=1 I

(∣∣tbk ∣∣ > ∣∣tk ∣∣)
tk : original sample t-statistic

• Otherwise: pe = 2min
(
p1, p2

)
p1, p2: Bootstrap p-values for one-sided alternative hypotheses.

4. Obtain CI’s by inverting the test. Find t-statistics such that
p-value is 0.05.
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

Back to the linear experimental design (7 clusters)

yig = 1 + xig + zig + Tg + µig + νg

Procedure:

1. Simulate the DGP.

2. wildbootstrap reg y x z treat, cluster(cvar)

3. Store coeffficient for treatment: [beta]

4. Check if CI for treatment contains 1

5. Repeat 1000 times steps 1-4.

6. Count number of times 1 was contained in CI.
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

Results – Wild cluster bootstrap

Remarks:

1. Coverage of 95.7% (vs. 95% nominal size)
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

Example 1: Simple linear regression
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

Example 1: Using CRVE instead

Remark: Large G and clusters have similar size, CICRVE ≈ CIWCRB



Cluster–robust inference in Stata

Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

Example 2: Few clusters of heterogeneous size
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

Example 2: Using CRVE instead

Remark: Small G and clusters of dissimilar size, CICRVE ̸≈ CIWCRB
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Alternatives when the assumptions of the CRVE fail

Wild cluster bootstrap

Example 3: Two regressors
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Conclusion

Conclusion

1. It’s crucial to adjust standard errors when dealing with
clustered data.

• CI’s can be very misleading otherwise
• Specially in experimental designs with treatment by clusters.

2. When clusters are many and homogeneous:

• CRVE: vce(cluster cvar)

3. When clusters are few and heterogeneous:

• Adjust degrees of freedom: vce(hc2 cvar, dfadjust)

• Wild cluster bootstrap: wildbootstrap
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Conclusion

Learning more...

1. help command

• Access to all our documentation.

2. www.stata.com

• Access to all our documentation;
• Frequently asked questions.

3. www.youtube.com/@statacorp/featured

4. tech-support@stata.com

• Specific questions about our software.
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Conclusion
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Conclusion

Thank you!
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