Using lasso and related estimators for prediction

Di Liu@StataCorp

Motivation: Prediction

What is a prediction?

- Predict an outcome in new data using information from existing data
- Good prediction minimizes mean-squared error (or another loss function) in new data
- Examples:
 - We have data on housing prices with hundreds of predictors. What would be the value of a new house?
 - Given a new application for a credit card, what would be the probability of default?

Questions

- Suppose you have many covariates, what belongs to the prediction model?
- What if there are more variables than number of observations?

Assumption

• We assume that there are only a few variables that matter for good predictions (sparsity assumption)

Why not just run OLS regression using all covariates?

- It may not be feasible if there are more variables than observations (the matrix X'X is not invertible)
- Even if it is feasible, too many covariates may cause overfitting
- **Overfitting** is the inclusion of extra parameters that improve the in-sample fit but increase the out-of-sample prediction errors
- These extra parameters capture the in-sample noise, but they
 perform poorly in the out-of-sample prediction

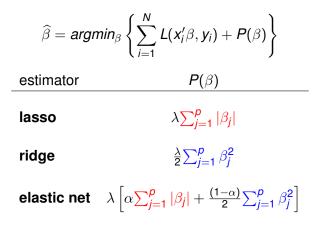
Using penalized regression to avoid overfitting

$$\widehat{\beta} = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{N} L(x'_i\beta, y_i) + P(\beta) \right\}$$

where L() is the loss function and $P(\beta)$ is the penalization.

- For linear model, $L(x'_i\beta, y_i) = (y_i x'_i\beta)^2$. For nonlinear model, it is the negative log-likelihood function
- The penalty term P(β) penalizes including many or large coefficients
- $\hat{\beta}$ are the penalized coefficients (prediction example)

Penalization



- The elastic-net estimator is a mixture of lasso and ridge regression (elastic-net example)
- We solve this optimization problem by searching over a grid of λ 's (and α 's)

Overview of Stata 16's lasso features

- Lasso and elastic net can select variables from a lot of variables
- You can use these selected variables to
 - predict an outcome using lasso toolbox (today's talk)
 - estimate the effect of other variables of interest on the outcome using the selected variables as controls (next webinar)

Lasso toolbox overview

- Estimation
 - Iasso
 - elasticnet
 - sqrtlasso
- Graph
 - cvplot
 - coefpath
- Exploratory tools
 - Iassoinfo
 - lassoknots
 - Iassocoef
 - Iassoselect
- Prediction
 - splitsample
 - predict
 - lassogof

Example: Predicting housing value

Goal: We have data on housing prices with hundreds of predictors. What would be the value of a new house?

Data: Extract from American Housing Survey

Features: The number of bedrooms, the number of rooms, building age, insurance, access to Internet, lot size, time in house, cars per person, ...

Variables: Raw features and interactions (more than 300 variables)

Question: Among **OLS**, **lasso**, **elastic net**, and **ridge** regression, which estimator should be used to predict the house value?

Load data and define potential covariates

Workflow for prediction

- Split the data into training sample and testing sample
- 2 **Obtain** $\hat{\beta}$ for each prediction technique using training sample only
- Evaluate the prediction model performance of each technique using the testing sample and choose the best one
- Predict outcome variable in a new dataset using the chosen model

Step 1: Split data into a training and testing sample

Firewall principle

The training sample should separate from the testing sample.

- . /*----- Step 1: split data -----*/
- . splitsample, generate(sample) split(0.7 0.3)
- . label define lbsample 1 "Training" 2 "Testing"
- . label value sample lbsample
- . tabulate sample

Cum.	Percent	Freq.	sample
70.00 100.00	70.00 30.00	1,820 780	Training Testing
	100.00	2,600	Total

Step 2: Obtain $\widehat{\beta}$ using training sample

```
. /*----- Step 2: run in training sample ----*/
. //----- OLS ----//
. regress lnvalue $covars if sample == 1
. estimates store ols
. //----- Lasso ----//
. lasso linear lnvalue $covars if sample == 1
. estimates store lasso
. //----- Elastic net ----//
. elasticnet linear lnvalue $covars if sample == 1, alpha(0.2 0.5 0.75 0.9)
. estimates store enet
. //----- ridge -----//
. elasticnet linear lnvalue $covars if sample == 1, alpha(0)
. estimates store ridge
```

- if sample == 1 restricts the estimator to the training sample only
- In elasticnet, option alpha() specifies α 's to search in penalty term $\alpha ||\beta||_1 + [(1 \alpha)/2] ||\beta||_2^2$ (penalized regression)
- Specifying alpha(0) is ridge regression

The first look at lasso output

. estimates restore lasso (results lasso are active now)				
. lasso				
Lasso linear model	No. of o	obs	= 1	,820
	No. of c	covariates	=	338
Selection: Cross-validation	No. of C	CV folds	=	10

ID	Description	lambda	No. of nonzero coef.	Out-of- sample R-squared	CV mean prediction error
1	first lambda	.5541667	0	0.0014	1.142842
38	lambda before	.0177293	39	0.4210	.662574
* 39	selected lambda	.0161543	43	0.4211	.662532
40	lambda after	.0147192	45	0.4206	.6630723
43	last lambda	.0111345	62	0.4185	.6654689

* lambda selected by cross-validation.

• Lasso **selects** only 43 variables among 338 potential covariates

post-selection

• Where is $\hat{\beta}$? Why there are 43 $\lambda's$? What is the λ^* selected by cross-validation? A closer look at lasso

elasticnet output

. estimates restore enet

(results enet are active now)

. elasticnet

	Elastic	net	linear	model
--	---------	-----	--------	-------

Selection: Cross-validation

No.	of	obs		=	1,820
No.	of	covar	riates	=	337
No.	of	CV fo	olds	=	10

alpha	ID	Description	lambda	No. of nonzero coef.	Out-of- sample R-squared	CV mean prediction error
0.900						
	1	first lambda	2.770833	0	0.0008	1.145315
	54	lambda before	.0216198	35	0.4237	.6595478
	* 55	selected lambda	.0196992	41	0.4239	.659291
	56	lambda after	.0179492	45	0.4237	.6595447
	59	last lambda	.0135779	58	0.4214	.6621048
0.750						
	60	first lambda	2.770833	0	0.0008	1.145315
	117	last lambda	.0149017	67	0.4202	.6635033
0.500						
	118	first lambda	2.770833	0	0.0008	1.145315
	171	last lambda	.0216198	68	0.4190	.6649168
0.200						
	172	first lambda	2.770833	0	0.0004	1.14397
	219	last lambda	.0377813	102	0.4130	.6717475

* alpha and lambda selected by cross-validation.

Elastic-net selects only 41 variables among 337 potential covariates

Ridge regression output

alpha	ID	Description	lambda	nonzero coef.	sample R-squared	prediction error
				No. of	Out-of-	CV mean
Selection: Cross-validation					CV folds	
Elastic r	net line	ear model	No. of	obs covariates	= 1,820 = 337	
. elastic	cnet					
		core ridge are active now)				

alpha	ID	Description	lambda	nonzero coef.	sample R-squared	prediction error
0.000						
	1	first lambda	554.1667	337	0.0008	1.145315
	88	lambda before	.1692345	337	0.3940	.693461
	* 89	selected lambda	.1542002	337	0.3942	.693273
	90	lambda after	.1405014	337	0.3942	.6932859
	100	last lambda	.0554167	337	0.3851	.7036694

* alpha and lambda selected by cross-validation.

- Ridge regression selects all variables
- But different λ leads to a different estimate of β

Step 3: Evaluate prediction performance using testing sample

. /*----- Step 3: Evaluate prediciton in testing sample ----*/

. lassogof ols lasso enet ridge, over(sample)

Penalized coefficients

Name	sample	MSE	R-squared	Obs
ols				
	Training	.550408	0.5190	1,820
	Testing	.6536993	0.3483	780
lasso				
	Training	.6270008	0.4521	1,820
	Testing	.5566048	0.4451	780
enet				
	Training	.6303752	0.4492	1,820
	Testing	.5575001	0.4442	780
ridge				
-	Training	.599504	0.4761	1,820
	Testing	.5730015	0.4287	780

• We choose lasso as the best prediction because it has the smallest MSE in the testing sample

Step 4: Predict housing value (1)

```
. /*----- Step 4: Predict housing value using chosen estimator -*/
.
. //----- chose lasso result ----//
. estimates restore lasso
(results lasso are active now)
.
. //----- load new data where housing value is not observed ---//
. use housing_new, clear
.
.
. //------ penalized coefficients -----//
. predict y_pen
(options xb penalized assumed; linear prediction with penalized coefficients)
```

- Default option **xb**: in the linear model, we compute $x'_i \hat{\beta}$
- Default option **penalized**: we use the $\hat{\beta}$ from the lasso regression (See penalized regression)

Step 4: Predict housing value (2)

```
. //----- post-selection coefficients -----//
. predict y_postsel, postselection
(option xb assumed; linear prediction with postselection coefficients)
```

- Option postselection: OLS y on X* gives post-selection β̃, where X* are variables selected by [asso]
- Post-selection coefficients are less biased. In the linear model, they may have better out-of-sample prediction performance than the penalized coefficients (Belloni et al., 2013)
- For the nonlinear models, there is no theory

A closer look at lasso (1)

Lasso (Tibshirani, 1996) is

$$\widehat{\beta} = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{N} L(x_i'\beta, y_i) + \lambda \sum_{j=1}^{p} \omega_j |\beta_j| \right\}$$

where

- λ is the lasso penalty parameter and ω_j is the penalty loading
- The kink in the absolute value function causes some elements in $\widehat{\beta}$ to be zero given some value of λ
- Lasso is also a variable-selection technique
 - covariates with $\hat{\beta}_j = 0$ are excluded
 - covariates with $\hat{\beta}_j \neq 0$ are included

A closer look at lasso (2)

$$\widehat{\beta} = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{N} L(\mathbf{x}_{i}^{\prime}\beta, \mathbf{y}_{i}) + \lambda \sum_{j=1}^{p} \omega_{j} |\beta_{j}| \right\}$$

- lasso searches over a grid of λ's, and each λ corresponds to a different β estimate (a different model)
- There is a λ_{max} that shrinks all the coefficients to zero
- As λ decreases, more variables will be selected
- How to choose λ ? (Choose λ)

The second look at lasso output

. estimates restore lasso (results lasso are active now)

. lasso

Lasso linear model

Selection: Cross-validation

No. of obs = 1,820 No. of covariates = 338 No. of CV folds = 10

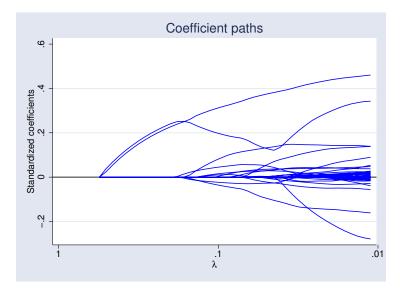
ID	Description	lambda	No. of nonzero coef.	Out-of- sample R-squared	CV mean prediction error
1	first lambda	.5541667	0	0.0014	1.142842
38	lambda before	.0177293	39	0.4210	.662574
* 39	selected lambda	.0161543	43	0.4211	.662532
40	lambda after	.0147192	45	0.4206	.6630723
43	last lambda	.0111345	62	0.4185	.6654689

* lambda selected by cross-validation.

• The number of nonzero coefficients increases as λ decreases

coefpath: Coefficients path plot

. coefpath, xunits(rlnlambda)



Dynamic of coefficient path

lassoknots: Display knot table

. lassoknots

ID	lambda	No. of nonzero coef.	CV mean pred. error	Variables (A)dded, (R)emoved, or left (U)nchanged
2	.504936	2	1.083387	A insurance c.crhincome#c.hincome
13 14	.1814646 .1653438	3 4	.7871774 .7785965	A c.insurance#c.vpperson A c.bage#c.internet
(output	omitted)		
41	.0134115	51	.663886	<pre>A 22.state#c.tinhouse 47.state#c.tinhouse 2.lotsize#c.bage 3.lotsize#2.state 3.lotsize#2.tenure 1.lotsize#c.internet 1.lotsize#c.erialno</pre>
41 42	.0134115 .0122201	51 55	.663886 .664712	<pre>R 1.bath#c.internet A 48.state#c.insurance 5.state#c.chincome 3.lotsize#c.bage 2.lotsize#48.state c.insurance#c.bincome</pre>
42 43	.0122201 .0111345	55 62	.664712 .6654689	R 3.lotsize#1.tenure A 1.state#c.crhincome 22.state#c.crhincome 2.tenure#40.state 1.lotsize#47.state 2.lotsize#5.state 2.lotsize#c.npersons c.children#c.npersons

* lambda selected by cross-validation.

• A λ is a knot if a variable is added or removed from the model

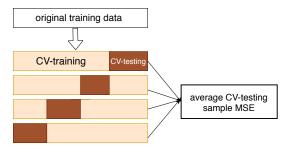
How to choose λ ?

For **lasso**, we can choose λ by cross-validation, adaptive lasso, plugin, and manual choice.

- Cross-validation mimics the process of doing out-of-sample prediction. It produces estimates of out-of-sample MSE and selects λ with minimum MSE
- Adaptive lasso performs multiple lassos, each with CV. After each lasso, variables with zero coefficients are removed and remaining variables are given penalty weights ω_j designed to drive small coefficients to zero. Thus, adaptive lasso typically selects fewer covariates than CV (lasso formula)
- The **Plugin** method is designed to dominate the estimation noise. It tends to selects fewer variables than CV or adaptive

How does cross-validation work?

- Based on data, compute a sequence of λ's as λ₁ > λ₂ > ··· > λ_k.
 λ₁ makes all coefficients zero (no variables are selected)
- 2 For each λ_j , do K-fold cross-validation to get an estimate of out-of-sample MSE



Select the λ* with the smallest estimate of out-of-sample MSE, and refit lasso using λ* and original training sample

The third look at lasso output

	No. of nonzero	Out-of- sample		CV mean prediction
Selection: Cross-validation	No. of	CV folds	=	10
	No. of	covariates	=	338
Lasso linear model	No. of	obs	=	1,820
. lasso				
. estimates restore lasso (results lasso are active now)				

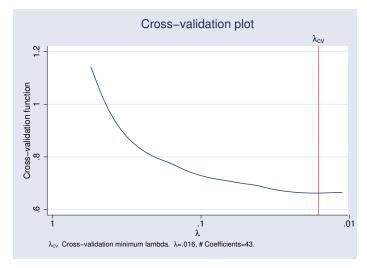
ID	Description	lambda	nonzero coef.	sample R-squared	prediction error
1	first lambda	.5541667	0	0.0014	1.142842
38	lambda before	.0177293	39	0.4210	.662574
* 39	selected lambda	.0161543	43	0.4211	.662532
40	lambda after	.0147192	45	0.4206	.6630723
43	last lambda	.0111345	62	0.4185	.6654689

* lambda selected by cross-validation.

- The selected λ* has the smallest CV mean prediction error and largest out-of-sample R-squared estimate
- By default lasso searches over 100 λ's, but there are only 43 λ's here. Why?

cvplot: Cross-validation plot

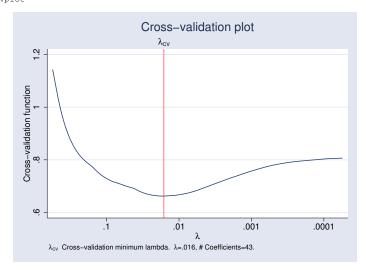
. cvplot



• **lasso** stops searching for λ once it finds a valid CV minimum

cvplot: Full picture

. lasso linear lnvalue \$covars if sample == 1, stop(0) selection(cv, alllambdas)
. cvplot



It may take a long time to search all the λ's

Use option **selection()** to choose λ

- . lasso linear lnvalue \$covars if sample == 1
- . estimates store cv
- . lasso linear lnvalue \$covars if sample == 1, selection(adaptive)
- . estimates store adaptive
- . lasso linear lnvalue \$covars if sample == 1, selection(plugin)
- . estimates store plugin

lassoinfo: Lasso information summary

. lassoinfo cv adaptive plugin

Estimate: cv Command: lasso

lambda	Selection criterion	Selection method	Model	Depvar
.0177293	CV min.	CV	linear	lnvalue
			adaptive lasso	Estimate: Command:
lambda	Selection criterion	Selection method	Model	Depvar
.2314885	CV min.	adaptive	linear	lnvalue
			plugin lasso	Estimate: Command:
No. of selected variables	lambda	Selection method	Model	Depvar
12	.1060145	plugin	linear	lnvalue
	.0177293 lambda .2314885 No. of selected variables	criterion lambda CV min. 0.0177293 Selection criterion lambda CV min. 0.2314885 CV min. 0.2314885 No. of selected lambda	method criterion lambda cv CV min0177293 Selection Selection method criterion lambda adaptive CV min2314885 Selection Selection lambda variables	ModelmethodcriterionlambdalinearcvCV min0177293adaptive lassoSelectionSelectionlambdaModelSelectionSelectionlambdalinearadaptiveCV min2314885plugin lassoCV min2314885SelectionSelectionNo. of selectedModelSelectionlambda

Adaptive lasso selects fewer variables than regular lasso

Plugin selects even fewer variables than adaptive lasso

lassocoef: Display lasso coefficients

. lassocoef cv adaptive plugin, display(coef)

	CV	adaptive	plugin
rooms insurance vpperson	.0036953 .3114183 .0052322	.4373481	.0117244 .1495797
c.bedrooms#c.rooms	.0107225		.0111987
(output omitted)			
bath#tenure no#Owned with mortgage or loan			.0008039
_cons	0	0	0

Legend:

b - base level e - empty cell o - omitted

lassoselect: Manually choose a λ (1)

- Suppose you want to choose λ with the minimum BIC, there is no need to rerun **lasso**
- First, let's look at output from lassoknots for BIC

```
. estimates restore cv
(results cv are active now)
```

. lassoknots, display(nonzero bic)

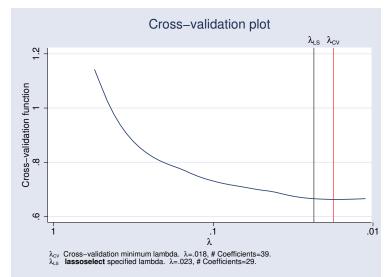
	ID	lambda	No. of nonzero coef.	BIC
	2	.504936	2	5327.691
	13	.1814646	3	4753.82
	(out	put omitted)	
	34	.0257221	28	4580.049
	34	.0257221	28	4580.049
	35	.0234371	29	4577.228
	36	.021355	33	4597.566
	36	.021355	33	4597.566
	37	.0194579	34	4595.408
	37	.0194579	34	4595.408
*	38	.0177293	39	4624.164
	39	.0161543	43	4645.637
	39	.0161543	43	4645.637
	40	.0147192	45	4652.893
	40	.0147192	45	4652.893
	41	.0134115	51	4689.776
	41	.0134115	51	4689.776
	42	.0122201	55	4711.432
	42	.0122201	55	4711.432
	43	.0111345	62	4755.442

* lambda selected by cross-validation.

lassoselect: Manually choose a λ (2)

```
. lassoselect id = 35
ID = 35 lambda = .0234371 selected
```

- . estimates store bic
- . cvplot



Comparing CV, adaptive, plugin, and BIC

. lassogof cv bic adaptive plugin if sample == 2
Penalized coefficients

Name	MSE	R-squared	Obs
cv	.5571567	0.4445	780
bic	.5613097	0.4404	780
adaptive	.5567655	0.4449	780
plugin	.6087777	0.3931	780

. lassogof cv bic adaptive plugin if sample == 2, postselection
Postselection coefficients

Name	MSE	R-squared	Obs
cv	.5713665	0.4304	780
bic	.5622546	0.4394	780
adaptive	.5626561	0.4390	780
plugin	.5915617	0.4102	780

Lasso toolbox summary

- Estimation:
 - lasso and elasticnet for linear, binary, and count data
 - sqrtlasso for linear data
 - cross-validation, adaptive lasso, plugin, and manual selection
- Graph:
 - cvplot: cross-validation plot
 - coefpath: coefficient path
- Exploratory tools:
 - lassoinfo: summary of lasso fitting
 - lassoknots: table of knots
 - lassocoef: display lasso coefficients
 - **lassoselect**: manually select λ (or α)
- Prediction
 - splitsample: randomly divide data into different samples
 - predict: prediction
 - lassogof: evaluate in-sample and out-of-sample prediction

References

- Belloni, A., V. Chernozhukov, et al. 2013. Least squares after model selection in high-dimensional sparse models. *Bernoulli* 19(2): 521–547.
- Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society: Series B (Methodological)* 58(1): 267–288.