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Motivation: Prediction

What is a prediction?
Predict an outcome in new data using information from existing
data
Good prediction minimizes mean-squared error (or another loss
function) in new data

Examples:
We have data on housing prices with hundreds of predictors.
What would be the value of a new house?
Given a new application for a credit card, what would be the
probability of default?
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Questions
Suppose you have many covariates, what belongs to the
prediction model?

What if there are more variables than number of observations?
Assumption

We assume that there are only a few variables that matter for
good predictions (sparsity assumption)
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Why not just run OLS regression using all covariates?

It may not be feasible if there are more variables than
observations (the matrix X ′X is not invertible)

Even if it is feasible, too many covariates may cause overfitting

Overfitting is the inclusion of extra parameters that improve the
in-sample fit but increase the out-of-sample prediction errors

These extra parameters capture the in-sample noise, but they
perform poorly in the out-of-sample prediction
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Using penalized regression to avoid overfitting

β̂ = argminβ

{
N∑

i=1

L(x ′i β, yi) + P(β)

}
where L() is the loss function and P(β) is the penalization.

For linear model, L(x ′i β, yi) = (yi − x ′i β)
2. For nonlinear model, it is

the negative log-likelihood function
The penalty term P(β) penalizes including many or large
coefficients
β̂ are the penalized coefficients ( prediction example )
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Penalization

β̂ = argminβ

{
N∑

i=1

L(x ′i β, yi) + P(β)

}

estimator P(β)

lasso λ
∑p

j=1 |βj |

ridge λ
2
∑p

j=1 β
2
j

elastic net λ
[
α
∑p

j=1 |βj |+ (1−α)
2

∑p
j=1 β

2
j

]
The elastic-net estimator is a mixture of lasso and ridge
regression ( elastic-net example )
We solve this optimization problem by searching over a grid of λ’s
(and α’s)
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Overview of Stata 16’s lasso features

Lasso and elastic net can select variables from a lot of variables

You can use these selected variables to
I predict an outcome using lasso toolbox (today’s talk)

I estimate the effect of other variables of interest on the outcome
using the selected variables as controls (next webinar)
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Lasso toolbox overview

Estimation
I lasso
I elasticnet
I sqrtlasso

Graph
I cvplot
I coefpath

Exploratory tools
I lassoinfo
I lassoknots
I lassocoef
I lassoselect

Prediction
I splitsample
I predict
I lassogof
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Example: Predicting housing value

Goal: We have data on housing prices with hundreds of
predictors. What would be the value of a new house?

Data: Extract from American Housing Survey
Features: The number of bedrooms, the number of rooms, building

age, insurance, access to Internet, lot size, time in house,
cars per person, . . .

Variables: Raw features and interactions (more than 300 variables)

Question: Among OLS, lasso, elastic net, and ridge regression,
which estimator should be used to predict the house value?

9 / 37



Load data and define potential covariates

. /*---------- load data ------------------------*/

.

. use housing, clear

.

.

. /*----------- define potential covariates ----*/

.

. global vlcont bedrooms rooms bag insurance internet tinhouse ///
> vpperson serialno crhincome children npersons hincome

. global vlfv lotsize bath tenure state

. global rawvars c.($vlcont) i.($vlfv)

. global covars ($rawvars)##($rawvars)
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Workflow for prediction

1 Split the data into training sample and testing sample

2 Obtain β̂ for each prediction technique using training sample only

3 Evaluate the prediction model performance of each technique
using the testing sample and choose the best one

4 Predict outcome variable in a new dataset using the chosen
model
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Step 1: Split data into a training and testing sample

Firewall principle
The training sample should separate from the testing sample.

. /*---------- Step 1: split data --------------*/

.

. splitsample, generate(sample) split(0.7 0.3)

. label define lbsample 1 "Training" 2 "Testing"

. label value sample lbsample

.

. tabulate sample

sample Freq. Percent Cum.

Training 1,820 70.00 70.00
Testing 780 30.00 100.00

Total 2,600 100.00
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Step 2: Obtain β̂ using training sample
. /*---------- Step 2: run in training sample ----*/
.
. //---------- OLS -------------//
. regress lnvalue $covars if sample == 1

. estimates store ols

.

. //---------- Lasso -----------//

. lasso linear lnvalue $covars if sample == 1

. estimates store lasso

.

. //---------- Elastic net -----//

. elasticnet linear lnvalue $covars if sample == 1, alpha(0.2 0.5 0.75 0.9)

. estimates store enet

.

. //---------- ridge ----------//

. elasticnet linear lnvalue $covars if sample == 1, alpha(0)

. estimates store ridge

if sample == 1 restricts the estimator to the training sample only
In elasticnet, option alpha() specifies α’s to search in penalty
term α||β||1 + [(1− α)/2]||β||22 ( penalized regression )
Specifying alpha(0) is ridge regression
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The first look at lasso output
. estimates restore lasso
(results lasso are active now)

. lasso

Lasso linear model No. of obs = 1,820
No. of covariates = 338

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .5541667 0 0.0014 1.142842
38 lambda before .0177293 39 0.4210 .662574

* 39 selected lambda .0161543 43 0.4211 .662532
40 lambda after .0147192 45 0.4206 .6630723
43 last lambda .0111345 62 0.4185 .6654689

* lambda selected by cross-validation.

Lasso selects only 43 variables among 338 potential covariates
post-selection

Where is β̂? Why there are 43 λ′s? What is the λ∗ selected by
cross-validation? A closer look at lasso

14 / 37



elasticnet output
. estimates restore enet
(results enet are active now)

. elasticnet

Elastic net linear model No. of obs = 1,820
No. of covariates = 337

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

0.900
1 first lambda 2.770833 0 0.0008 1.145315
54 lambda before .0216198 35 0.4237 .6595478

* 55 selected lambda .0196992 41 0.4239 .659291
56 lambda after .0179492 45 0.4237 .6595447
59 last lambda .0135779 58 0.4214 .6621048

0.750
60 first lambda 2.770833 0 0.0008 1.145315
117 last lambda .0149017 67 0.4202 .6635033

0.500
118 first lambda 2.770833 0 0.0008 1.145315
171 last lambda .0216198 68 0.4190 .6649168

0.200
172 first lambda 2.770833 0 0.0004 1.14397
219 last lambda .0377813 102 0.4130 .6717475

* alpha and lambda selected by cross-validation.

Elastic-net selects only 41 variables among 337 potential
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Ridge regression output

. estimates restore ridge
(results ridge are active now)

. elasticnet

Elastic net linear model No. of obs = 1,820
No. of covariates = 337

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

0.000
1 first lambda 554.1667 337 0.0008 1.145315
88 lambda before .1692345 337 0.3940 .693461

* 89 selected lambda .1542002 337 0.3942 .693273
90 lambda after .1405014 337 0.3942 .6932859
100 last lambda .0554167 337 0.3851 .7036694

* alpha and lambda selected by cross-validation.

Ridge regression selects all variables
But different λ leads to a different estimate of β
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Step 3: Evaluate prediction performance using testing
sample

. /*---------- Step 3: Evaluate prediciton in testing sample ----*/

.

. lassogof ols lasso enet ridge, over(sample)

Penalized coefficients

Name sample MSE R-squared Obs

ols
Training .550408 0.5190 1,820
Testing .6536993 0.3483 780

lasso
Training .6270008 0.4521 1,820
Testing .5566048 0.4451 780

enet
Training .6303752 0.4492 1,820
Testing .5575001 0.4442 780

ridge
Training .599504 0.4761 1,820
Testing .5730015 0.4287 780

We choose lasso as the best prediction because it has the
smallest MSE in the testing sample
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Step 4: Predict housing value (1)

. /*---------- Step 4: Predict housing value using chosen estimator -*/

.

. //------ chose lasso result ---------//

. estimates restore lasso
(results lasso are active now)

.

. //------ load new data where housing value is not observed ---//

. use housing_new, clear

.

. //-------- penalized coefficients ----------//

. predict y_pen
(options xb penalized assumed; linear prediction with penalized coefficients)

Default option xb: in the linear model, we compute x ′i β̂

Default option penalized: we use the β̂ from the lasso regression
(See penalized regression )
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Step 4: Predict housing value (2)

. //-------- post-selection coefficients ----------//

. predict y_postsel, postselection
(option xb assumed; linear prediction with postselection coefficients)

Option postselection: OLS y on X ∗ gives post-selection β̃,
where X ∗ are variables selected by lasso

Post-selection coefficients are less biased. In the linear model,
they may have better out-of-sample prediction performance than
the penalized coefficients (Belloni et al., 2013)
For the nonlinear models, there is no theory
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A closer look at lasso (1)

Lasso (Tibshirani, 1996) is

β̂ = argminβ


N∑

i=1

L(x ′i β, yi) + λ

p∑
j=1

ωj |βj |


where

λ is the lasso penalty parameter and ωj is the penalty loading
The kink in the absolute value function causes some elements in
β̂ to be zero given some value of λ
Lasso is also a variable-selection technique

I covariates with β̂j = 0 are excluded
I covariates with β̂j 6= 0 are included
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A closer look at lasso (2)

β̂ = argminβ


N∑

i=1

L(x ′i β, yi) + λ

p∑
j=1

ωj |βj |


lasso searches over a grid of λ′s, and each λ corresponds to a
different β estimate (a different model)
There is a λmax that shrinks all the coefficients to zero
As λ decreases, more variables will be selected
How to choose λ? ( choose λ )
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The second look at lasso output

. estimates restore lasso
(results lasso are active now)

. lasso

Lasso linear model No. of obs = 1,820
No. of covariates = 338

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .5541667 0 0.0014 1.142842
38 lambda before .0177293 39 0.4210 .662574

* 39 selected lambda .0161543 43 0.4211 .662532
40 lambda after .0147192 45 0.4206 .6630723
43 last lambda .0111345 62 0.4185 .6654689

* lambda selected by cross-validation.

The number of nonzero coefficients increases as λ decreases
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coefpath: Coefficients path plot
. coefpath, xunits(rlnlambda)
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Dynamic of coefficient path
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lassoknots: Display knot table
. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

2 .504936 2 1.083387 A insurance
c.crhincome#c.hincome

13 .1814646 3 .7871774 A c.insurance#c.vpperson
14 .1653438 4 .7785965 A c.bage#c.internet

(output omitted ...)

41 .0134115 51 .663886 A 22.state#c.tinhouse
47.state#c.tinhouse
2.lotsize#c.bage
3.lotsize#22.state
3.lotsize#2.tenure
1.lotsize#c.internet
1.lotsize#c.serialno

41 .0134115 51 .663886 R 1.bath#c.internet
42 .0122201 55 .664712 A 48.state#c.insurance

5.state#c.crhincome
3.lotsize#c.bage
2.lotsize#48.state
c.insurance#c.hincome

42 .0122201 55 .664712 R 3.lotsize#1.tenure
43 .0111345 62 .6654689 A 1.state#c.crhincome

22.state#c.crhincome
2.tenure#40.state
1.lotsize#47.state
2.lotsize#5.state
2.lotsize#c.npersons
c.children#c.npersons

* lambda selected by cross-validation.

A λ is a knot if a variable is added or removed from the model
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How to choose λ?

For lasso, we can choose λ by cross-validation, adaptive lasso, plugin,
and manual choice.

Cross-validation mimics the process of doing out-of-sample
prediction. It produces estimates of out-of-sample MSE and
selects λ with minimum MSE
Adaptive lasso performs multiple lassos, each with CV. After
each lasso, variables with zero coefficients are removed and
remaining variables are given penalty weights ωj designed to drive
small coefficients to zero. Thus, adaptive lasso typically selects
fewer covariates than CV ( lasso formula )
The Plugin method is designed to dominate the estimation noise.
It tends to selects fewer variables than CV or adaptive
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How does cross-validation work?

1 Based on data, compute a sequence of λ’s as λ1 > λ2 > · · · > λk .
λ1 makes all coefficients zero (no variables are selected)

2 For each λj , do K-fold cross-validation to get an estimate of
out-of-sample MSE

original training data 

CV-training CV-testing

test
average CV-testing

sample MSE

3 Select the λ∗ with the smallest estimate of out-of-sample MSE,
and refit lasso using λ∗ and original training sample
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The third look at lasso output

. estimates restore lasso
(results lasso are active now)

. lasso

Lasso linear model No. of obs = 1,820
No. of covariates = 338

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .5541667 0 0.0014 1.142842
38 lambda before .0177293 39 0.4210 .662574

* 39 selected lambda .0161543 43 0.4211 .662532
40 lambda after .0147192 45 0.4206 .6630723
43 last lambda .0111345 62 0.4185 .6654689

* lambda selected by cross-validation.

The selected λ∗ has the smallest CV mean prediction error and
largest out-of-sample R-squared estimate
By default lasso searches over 100 λ′s, but there are only 43 λ’s
here. Why?
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cvplot: Cross-validation plot
. cvplot
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λCV  Cross−validation minimum lambda.  λ=.016, # Coefficients=43.

Cross−validation plot

lasso stops searching for λ once it finds a valid CV minimum
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cvplot: Full picture
. lasso linear lnvalue $covars if sample == 1, stop(0) selection(cv, alllambdas)
. cvplot
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Cross−validation plot

It may take a long time to search all the λ’s
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Use option selection() to choose λ

. lasso linear lnvalue $covars if sample == 1

. estimates store cv

.

. lasso linear lnvalue $covars if sample == 1, selection(adaptive)

. estimates store adaptive

.

. lasso linear lnvalue $covars if sample == 1, selection(plugin)

. estimates store plugin
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lassoinfo: Lasso information summary
. lassoinfo cv adaptive plugin

Estimate: cv
Command: lasso

No. of
Selection Selection selected

Depvar Model method criterion lambda variables

lnvalue linear cv CV min. .0177293 39

Estimate: adaptive
Command: lasso

No. of
Selection Selection selected

Depvar Model method criterion lambda variables

lnvalue linear adaptive CV min. .2314885 17

Estimate: plugin
Command: lasso

No. of
Selection selected

Depvar Model method lambda variables

lnvalue linear plugin .1060145 12

Adaptive lasso selects fewer variables than regular lasso
Plugin selects even fewer variables than adaptive lasso
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lassocoef: Display lasso coefficients

. lassocoef cv adaptive plugin, display(coef)

cv adaptive plugin

rooms .0036953 .0117244
insurance .3114183 .4373481 .1495797
vpperson .0052322

c.bedrooms#c.rooms .0107225 .0111987

(output omitted ...)

bath#tenure
no#Owned with mortgage or loan .0008039

_cons 0 0 0

Legend:
b - base level
e - empty cell
o - omitted
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lassoselect: Manually choose a λ (1)
Suppose you want to choose λ with the minimum BIC, there is no
need to rerun lasso
First, let’s look at output from lassoknots for BIC

. estimates restore cv
(results cv are active now)

. lassoknots, display(nonzero bic)

No. of
nonzero

ID lambda coef. BIC

2 .504936 2 5327.691
13 .1814646 3 4753.82
(output omitted ...)
34 .0257221 28 4580.049
34 .0257221 28 4580.049
35 .0234371 29 4577.228
36 .021355 33 4597.566
36 .021355 33 4597.566
37 .0194579 34 4595.408
37 .0194579 34 4595.408

* 38 .0177293 39 4624.164
39 .0161543 43 4645.637
39 .0161543 43 4645.637
40 .0147192 45 4652.893
40 .0147192 45 4652.893
41 .0134115 51 4689.776
41 .0134115 51 4689.776
42 .0122201 55 4711.432
42 .0122201 55 4711.432
43 .0111345 62 4755.442

* lambda selected by cross-validation.
34 / 37



lassoselect: Manually choose a λ (2)
. lassoselect id = 35
ID = 35 lambda = .0234371 selected

. estimates store bic

. cvplot
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Cross−validation plot
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Comparing CV, adaptive, plugin, and BIC

. lassogof cv bic adaptive plugin if sample == 2

Penalized coefficients

Name MSE R-squared Obs

cv .5571567 0.4445 780
bic .5613097 0.4404 780

adaptive .5567655 0.4449 780
plugin .6087777 0.3931 780

.

. lassogof cv bic adaptive plugin if sample == 2, postselection

Postselection coefficients

Name MSE R-squared Obs

cv .5713665 0.4304 780
bic .5622546 0.4394 780

adaptive .5626561 0.4390 780
plugin .5915617 0.4102 780
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Lasso toolbox summary

Estimation:
I lasso and elasticnet for linear, binary, and count data
I sqrtlasso for linear data
I cross-validation, adaptive lasso, plugin, and manual selection

Graph:
I cvplot: cross-validation plot
I coefpath: coefficient path

Exploratory tools:
I lassoinfo: summary of lasso fitting
I lassoknots: table of knots
I lassocoef: display lasso coefficients
I lassoselect: manually select λ (or α)

Prediction
I splitsample: randomly divide data into different samples
I predict: prediction
I lassogof: evaluate in-sample and out-of-sample prediction
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