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Introduction

Many recent (quasi)-experimental empirical studies characterize compliers

▶ Following Abadie (2003); Angrist and Pischke (2009)

▶ MHE: “If the compliant subpopulation is similar to other populations of interest, the case for
extrapolating estimated causal effects to these other populations is stronger.”

▶ Directly answers: who are induced to take up treatment when eligible?

We extend complier lit and provide ways to characterize “supercompliers”

▶ Supercompliers: subset of compliers for whom treatment improves outcome

▶ Directly answers: who benefit from gaining treatment eligibility?

▶ If supercompliers differ from compliers ⇒ better to target pop. similar to supercompliers
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Introduction

Virtually all empirical studies provide an answer of who benefit

▶ typically via subsample analysis, e.g., subsetting on covariate, causal forest

Describing supercompliers complementary to conventional heterogeneity analysis

▶ Just like describing compliers is complementary to heterogeneity analysis of take-up

▶ Conventional hetero. analysis: which subsample has more beneficiaries/benefits more?

▶ Supercomplier analysis: of all those who benefit, what are their characteristics?

Characterizing supercompliers useful in Marginal Value of Public Funds (MVPF) analysis

▶ Illustration using two job training experiments
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Introduction

Exposition focuses on binary Y ; builds on LATE assumptions + outcome monotonicity

▶ Assumptions jointly testable

▶ Supercomplier characteristics distribution point identified

▶ Can be estimated using ivregress
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Presentation Outline

Introduction

Statistical Framework

▶ Set-up
▶ Identification
▶ Estimation

Value in characterizing supercompliers

▶ MVPF analysis

Empirical Illustration

▶ Job Corps
▶ JTPA

Conclusion
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Statistical Framework: Set-up
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Notations and Assumptions

Observables
Z : treatment assignment; D: treatment take-up; Y : outcome; X : characteristics

▶ Z , D, Y : binary; Y = 1 ⇒ good outcome

▶ Potential treatments: Dz ; potential outcomes: Yzd

Assumptions
Random Assignment: Z indep. to potential treatments/outcomes and X

Exclusion: Y1d = Y0d ≡ Yd

Treatment Monotonicity: Pr(D1 ⩾ D0) = 1
First Stage: Pr(D1 > D0) > 0

Outcome Monotonicity: Pr(Y1 ⩾ Y0) = 1
Reduced Form: Pr(D1 > D0,Y1 > Y0) > 0
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Defining Supercompliers

(Extended) Principal Strata
(D1,D0) ⇒ Principal strata of (treatment) always-takers, never-takers, compliers, defiers

(Y1,Y0) ⇒ Definitions of (outcome) always-takers, never-takers, compliers, defiers

(D1,D0,Y1,Y0) ⇒ 16 (4× 4) extended principal strata; 9 (3× 3) with mono. assumptions

Supercompliers (D1 > D0,Y1 > Y0): only group to benefit from gaining treat. eligib.

For treatment always takers + never takers, D does not change with Z

For outcome always takers + never takers, Y does not change with D
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Statistical Framework: Identification
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Characterizing Compliers and Supercompliers

Compliers (Abadie 2003; Angrist and Pischke 2009)

share: Pr(D1 > D0) = E [D|Z = 1]− E [D|Z = 0]
average X : E [X |D1 > D0] = E [κX ]/Pr(D1 > D0)

average Yd (d = 0, 1): E [Yd |D1 > D0] = E [κdY ]/Pr(D1 > D0)

where κ ≡ 1 − D(1−Z)
Pr(Z=0) −

(1−D)Z
Pr(Z=1) , κ0 ≡ (1−D)(1−Z)

Pr(Z=0) − (1−D)Z
Pr(Z=1) , κ1 ≡ DZ

Pr(Z=1) −
D(1−Z)
Pr(Z=0)

Supercompliers:

share: Pr(D1 > D0,Y1 > Y0) = E [Y |Z = 1]− E [Y |Z = 0]
average X : E [X |D1 > D0,Y1 > Y0] = E [πX ]/Pr(D1 > D0,Y1 > Y0)

where π ≡ κ− κ0Y − κ1(1 − Y )
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Remarks on Identification: 1

Supercomplier characteristics can also be identified by a Wald-type estimand

E [X |D1 > D0,Y1 > Y0] =
E [XY |Z = 1]− E [XY |Z = 0]
E [Y |Z = 1]− E [Y |Z = 0]

D does not enter estimand: Identification applies regardless of degree of treatment compliance
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Remarks on Identification: 2

Relaxing restriction that Y be binary; supercompliers still those with D1 > D0,Y1 > Y0

Pr(supercomplier) · E [Y1 − Y0|supercomplier] = E [Y |Z = 1]− E [Y |Z = 0]

E [X (Y1 − Y0)|supercomplier]
E [Y1 − Y0|supercomplier]

=
E [XY |Z = 1]− E [XY |Z = 0]
E [Y |Z = 1]− E [Y |Z = 0]
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Remarks on Identification: 3

Beyond averages: Replace X with 1[X⩽x] for any x and identify distribution of X

X can be multi-dimensional
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Remarks on Identification: 4

Violation of outcome monotonicity: bias ∝ share of “outcome defiers” (D1 > D0,Y1 < Y0)

Bias = ξ · {E [X |D1 > D0,Y1 > Y0]− E [X |D1 > D0,Y1 < Y0]}

where

ξ ≡ Pr(D1 > D0,Y1 < Y0)

Pr(D1 > D0,Y1 < Y0) + Pr(D1 > D0,Y1 > Y0)
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Remarks on Identification: 5

Shares/characteristics of two remaining groups within treatment compliers identified

Pr(D1 > D0,Y0 = Y1 = 1) = E [κ0Y ] = E [(1 − D)Y |Z = 1]− E [(1 − D)Y |Z = 0]

E [X |D1 > D0,Y0 = Y1 = 1] =
E [κ0YX ]

E [κ0Y ]
=

E [(1 − D)YX |Z = 1]− E [(1 − D)YX |Z = 0]
E [(1 − D)Y |Z = 1]− E [(1 − D)Y |Z = 0]

Pr(D1 > D0,Y0 = Y1 = 0) = E [κ1(1 − Y )] = E [D(1 − Y )|Z = 1]− E [D(1 − Y )|Z = 0]

E [X |D1 > D0,Y0 = Y1 = 0] =
E [κ1(1 − Y )X ]

E [κ1(1 − Y )]
=

E [D(1 − Y )X |Z = 1]− E [D(1 − Y )X |Z = 0]
E [D(1 − Y )|Z = 1]− E [D(1 − Y )|Z = 0]
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Remarks on Identification: 6

Adding a Mediator: Causal chain Z → D → M → Y

If we extend exclusion restriction and monotonicity assumption to cover M,
i.e., Yzdm = Ym, Mzd = Md , and M1 ⩾ M0,

then previous estimands identify share + characteristics of superdupercompliers
i.e., those with D1 > D0,M1 > M0,Y1 > Y0

Can also identify shares and characteristics of those with
D1 > D0,M1 = M0 = m

D1 > D0,M1 > M0,Y1 = Y0 = y
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Outcome Monotonicity Assumption

Relative to standard LATE assumptions, outcome monotonicity warrants more discussion

Existing studies have made similar assumptions

▶ Manski (1997); Manski and Pepper (2000); Lee (2009)

Plausibility of outcome monotonicity depends on context

▶ Plausible: training ⇒ better labor market outcomes

▶ Plausible: health insurance coverage ⇒ more doctor visits

▶ Ambiguous: health insurance coverage and out-of-pocket spending
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▶ Ambiguous: health insurance coverage and out-of-pocket spending
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Outcome Monotonicity Assumption: Test

(i) Under our assumptions, the following inequalities hold

Pr(Y = 0,D = 1|Z = 1)− Pr(Y = 0,D = 1|Z = 0) ⩾ 0
Pr(Y = 1,D = 0|Z = 0)− Pr(Y = 1,D = 0|Z = 1) ⩾ 0

Pr(Y = 1|Z = 1)− Pr(Y = 1|Z = 0) ⩾ 0

(ii) If these inequalities hold, there exists a joint distribution of (Y11,Y10,Y01,Y00,D1,D0,Z )
that satisfies our assumptions and induces the observed distribution of (Y ,D,Z ).
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Statistical Framework: Estimation
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Estimating Complier Characteristics

Alternative estimands for average complier characteristics
1 E [κX ]/ {E [D|Z = 1]− E [D|Z = 0]}

2 {Pr(D = 1|Z = 1)E [X |D = 1,Z = 1]− Pr(D = 1|Z = 0)E [X |D = 1,Z = 0]} /fs
3 {E [DX |Z = 1]− E [DX |Z = 0]} / {E [D|Z = 1]− E [D|Z = 0]}
4 {E [(1 − D)X |Z = 1]− E [(1 − D)X |Z = 0]} / {E [1 − D|Z = 1]− E [1 − D|Z = 0]}
5 Average of 3 and 4

All estimands can be implemented with ivregress
▶ Sample analogs of 2 and 3 are equal
▶ implementation: ivregress 2sls DX (D = Z)

Sample analog of 1 is the same as that of

E [D̃X |Z = 1]− E [D̃X |Z = 0]
E [D̃|Z = 1]− E [D̃|Z = 0]

where D̃ = D − Pr(Z = 0)
▶ implementation: ivregress 2sls DtildeX (Dtilde = Z)
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Estimating Supercomplier Characteristics

Supercompliers characteristics can be analogously estimated, e.g., with

ivregress 2sls YX (Y = Z)
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Stratified Randomization

Randomization in many experiments is stratified

Common practice to include strata fixed effects W in regressions

How does inclusion of W affect interpretation of supercomplier characteristics?

Assuming
1 Conditional independence
2 Non-zero conditional reduced form
3 Saturation of strata fixed effects

2sls estimand identifies a nonnegatively weighted average of supercomplier characteristics:

β2SLS = E [ωWE [X |supercomplier,W ]]

with ωW ≥ 0 across all strata W .
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Empirical Value of Characterizing Supercompliers?
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Empirical Value of Characterizing Supercompliers?

Characterizing supercompliers offers description of beneficiaries

▶ Can compare supercompliers to different populations

Characterizing supercompliers useful for MVPF analysis

▶ Facilitate incorporation of social welfare weights
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Marginal Value of Public Funds: 1
Hendren and Sprung-Keyser (2020), “HSK”, advocate for systematic reporting of MVPF

▶ Aids comparison of government programs

Social welfare: Welfare ≡
∑

i ηiUi
▶ Ui : individual utility expressed in dollar terms
▶ ηi : social welfare weight (impact of transferring $1 to individual i)

Impact of a policy change, denoted by dp, on social welfare:

dWelfare
dp

=
∑
i

ηi
dUi

dp
≡

∑
i

ηiWTPi

▶ WTP = willingness to pay; Captures benefits of policy change

HSK MVPF definition
MVPF =

∑
i

WTPi/G

▶ G : impact of dp on government budget

Note: η not in MVPF definition, presumably due to difficulty in implementation
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Marginal Value of Public Funds: 2

MVPF calculation (focusing on WTP)

For policies that include a transfer

▶ WTP includes dollar value of transfer

If policies affect later life outcomes, e.g., human capital, health

▶ WTP includes dollar values of these causal impacts

▶ Causal impacts possibly measured on a subpopulation, e.g., LATE
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Supercompliers and MVPF

If WTP is measured as the effect of policy on outcome Y
▶ WTPi = Y1i − Y0i

Weighted average WTP for the complier group is

E [ηi (Y1i − Y0i )|complier]︸ ︷︷ ︸
Weighted WTP

= E [ηi |supercomplier] LATEY︸ ︷︷ ︸
Unweighted WTP

E [ηi |supercomplier] is the ratio of weighted WTP over unweighted WTP

▶ If ηi = h(Xi ) one can estimate it with our machinery

If E [Xi |supercomplier] is systematically reported
▶ Reader may construct weighted WTP with own weights without microdata access
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Empirical Illustration

Comey, Eng, Leung, Pei ( Joint Committee on Taxation, Internal Revenue Service, Cornell University)Supercompliers November 7, 2024 23 / 32



National Job Corps Study and National JTPA Study

National Job Corps Study: Randomized experiment to evaluate Job Corps

Job Corps: residential ed and voc training program targeting disadvantaged youth

Participants randomized between 1994 and 1995

We use data from the 48-month follow-up analysis sample (N = 11, 313)

National JTPA Study: Randomized experiment to evaluate JTPA training programs

JTPA: target economically disadvantaged adults and out-of-school youths

Participants randomized between 1987 and 1989

We use data from the 30-month follow-up analysis sample
▶ Focusing on adult females (N = 6, 102)
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Job Corps Supercomplier Characteristics; Outcome: Receiving GED

Pop-SC C-SC
Female 38% 38% 48% ** ***
White 25% 25% 34% ** **
Age >=20 17% 16% 21% *
Never Arrested 69% 71% 78% **
Prev. Empl. 60% 61% 75% *** ***
Income <$3K 16% 15% 11% * *
Income $3-6K 13% 12% 9%
Income $6-9K 6% 7% 5%
Income $9-12K 6% 6% 9%
Income >$12K 59% 60% 67% * *

Population 
Mean

Complier 
Mean

Supercomplier 
Mean

Diff
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Job Corps Supercomplier Characteristics; Outcome: Voc. Certificate

Pop-SC C-SC
Female 41% 39% 44% **
White 27% 27% 31% ** ***
Age >=20 27% 25% 28%
Never Arrested 71% 73% 78% *** ***
Prev. Empl. 64% 64% 69% ** ***
Income <$3K 16% 15% 16%
Income $3-6K 13% 12% 12%
Income $6-9K 7% 7% 9%
Income $9-12K 6% 6% 6%
Income >$12K 59% 59% 57%

Population 
Mean

Complier 
Mean

Supercomplier 
Mean

Diff
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Job Corps Supercomplier Characteristics; Outcome: Qtr16 Earnings

Pop-SC C-SC
Female 41% 39% 38%
White 27% 27% 65% *** ***
Age >=20 27% 25% 55% ** **
Never Arrested 72% 74% 79%
Prev. Empl. 64% 64% 75%
Income <$3K 16% 15% 10%
Income $3-6K 13% 12% 1%
Income $6-9K 7% 7% 1%
Income $9-12K 6% 6% 7%
Income >$12K 58% 59% 81%

Population 
Mean

Complier 
Mean

Supercomplier 
Mean

Diff
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Job Corps: MVPF

HSK report Job Corps MVPF as 0.15

▶ Based on 20-year follow-up analysis by Schochet (2018)

Schochet (2018) uses tax data, which are not for public use

▶ Cannot calculate analogous weighted MVPF comparable to HSK’s MVPF

Our survey data based results tentatively suggest weighted MVPF would be even smaller
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JTPA Supercomplier Characteristics; Outcome: Total 30-Month Earnings

Pop-SC C-SC
Black 26% 24% 37%
Hispanic 12% 13% 2%
High School/GED 68% 69% 70%
Ever Rec Voc Train 45% 45% 48%
Annual Earnings 2489 2461 1773
Worked 1-12 Weeks 16% 16% 21%
Worked 13-52 Weeks 43% 45% 13% *
Received AFDC 38% 38% 49%
Income <$3K 31% 29% 46%
Income $3-6K 34% 35% 15%
Income $6-9K 16% 16% 26%
Income $9-12K 9% 9% 4%
Income >$12K 9% 10% 8%

DiffPopulation 
Mean

Complier 
Mean

Supercomplier 
Mean
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JTPA: MVPF with Social Welfare Weights

Picking social welfare weights: Textbook social welfare function Ψ(u) = u1−ϕ

1−ϕ

▶ When ϕ = 0, $1 transfer has same impact on social welfare regardless of income

▶ When ϕ = 0.5, $1 transfer to someone with $1.5K ∼ $1.73 transfer to someone with 4.5K

▶ When ϕ = 1, $1 transfer to someone with $1.5K ∼ $3 transfer to someone with 4.5K

Unweighted (ϕ = 0) JTPA MVPF reported by HSK is 1.38; Weighted MVPF is

▶ 1.63 when ϕ = 0.5

▶ 1.97 when ϕ = 1

Reader can compute own weighted MVPF if relevant supercomplier char. are reported
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Conclusion

We study what we call “supercompliers”

▶ Whose D responds positively to Z and whose Y responds positively to D

▶ Supercompliers are the only ones who benefit from gaining treatment eligibility

Supercomplier characteristics identified under LATE assumptions + outcome monotonicity

Identification result leads to natural IV estimators

Illustrate the value of our tools in two training programs

▶ Describing supercompliers can facilitate calculation of MVPF with social weights
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Thank you!
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