Supercompliers

Matthew Comey¹ Amanda Eng² Pauline Leung³ Zhuan Pei³

¹Joint Committee on Taxation

²Internal Revenue Service

³Cornell University

November 7, 2024

~	_		-
(omey	Eng	euna	Per
Comey.	LILE.	Leune.	

3

1/32

• Any opinions and conclusions expressed herein are those of the authors and do not necessarily reflect the views of the Joint Committee on Taxation or any Member of Congress.

• Eng performed this work prior to joining the Internal Revenue Service. All views and opinions expressed herein do not represent the Internal Revenue Service.

1/32

- Many recent (quasi)-experimental empirical studies characterize compliers
 - Following Abadie (2003); Angrist and Pischke (2009)

э

- Many recent (quasi)-experimental empirical studies characterize compliers
 - Following Abadie (2003); Angrist and Pischke (2009)
 - MHE: "If the compliant subpopulation is similar to other populations of interest, the case for extrapolating estimated causal effects to these other populations is stronger."

イロト イポト イヨト イヨト

- Many recent (quasi)-experimental empirical studies characterize compliers
 - Following Abadie (2003); Angrist and Pischke (2009)
 - MHE: "If the compliant subpopulation is similar to other populations of interest, the case for extrapolating estimated causal effects to these other populations is stronger."
 - Directly answers: who are induced to take up treatment when eligible?

2/32

A D A A B A A B A A B A

- Many recent (quasi)-experimental empirical studies characterize compliers
 - Following Abadie (2003); Angrist and Pischke (2009)
 - MHE: "If the compliant subpopulation is similar to other populations of interest, the case for extrapolating estimated causal effects to these other populations is stronger."
 - Directly answers: who are induced to take up treatment when eligible?
- We extend complier lit and provide ways to characterize "supercompliers"
 - Supercompliers: subset of compliers for whom treatment improves outcome

・ロット 全部 マント・ロット

- Many recent (quasi)-experimental empirical studies characterize compliers
 - Following Abadie (2003); Angrist and Pischke (2009)
 - MHE: "If the compliant subpopulation is similar to other populations of interest, the case for extrapolating estimated causal effects to these other populations is stronger."
 - Directly answers: who are induced to take up treatment when eligible?
- We extend complier lit and provide ways to characterize "supercompliers"
 - Supercompliers: subset of compliers for whom treatment improves outcome
 - Directly answers: who benefit from gaining treatment eligibility?

- Many recent (quasi)-experimental empirical studies characterize compliers
 - Following Abadie (2003); Angrist and Pischke (2009)
 - MHE: "If the compliant subpopulation is similar to other populations of interest, the case for extrapolating estimated causal effects to these other populations is stronger."
 - Directly answers: who are induced to take up treatment when eligible?
- We extend complier lit and provide ways to characterize "supercompliers"
 - Supercompliers: subset of compliers for whom treatment improves outcome
 - Directly answers: who benefit from gaining treatment eligibility?
 - If supercompliers differ from compliers \Rightarrow better to target pop. similar to supercompliers

- Virtually all empirical studies provide an answer of who benefit
 - ▶ typically via subsample analysis, e.g., subsetting on covariate, causal forest

э

- Virtually all empirical studies provide an answer of who benefit
 - ▶ typically via subsample analysis, e.g., subsetting on covariate, causal forest
- Describing supercompliers *complementary* to conventional heterogeneity analysis
 - > Just like describing compliers is complementary to heterogeneity analysis of take-up

- Virtually all empirical studies provide an answer of who benefit
 - ▶ typically via subsample analysis, e.g., subsetting on covariate, causal forest
- Describing supercompliers *complementary* to conventional heterogeneity analysis
 - > Just like describing compliers is complementary to heterogeneity analysis of take-up
 - Conventional hetero. analysis: which subsample has more beneficiaries/benefits more?
 - Supercomplier analysis: of all those who benefit, what are their characteristics?

3

・ロット 全部 マント・ロット

- Virtually all empirical studies provide an answer of who benefit
 - ▶ typically via subsample analysis, e.g., subsetting on covariate, causal forest
- Describing supercompliers *complementary* to conventional heterogeneity analysis
 - Just like describing compliers is complementary to heterogeneity analysis of take-up
 - Conventional hetero. analysis: which subsample has more beneficiaries/benefits more?
 - Supercomplier analysis: of all those who benefit, what are their characteristics?
- Characterizing supercompliers useful in Marginal Value of Public Funds (MVPF) analysis

3/32

(日) (雪) (日) (日) (日)

- Virtually all empirical studies provide an answer of who benefit
 - ▶ typically via subsample analysis, e.g., subsetting on covariate, causal forest
- Describing supercompliers *complementary* to conventional heterogeneity analysis
 - Just like describing compliers is complementary to heterogeneity analysis of take-up
 - Conventional hetero. analysis: which subsample has more beneficiaries/benefits more?
 - Supercomplier analysis: of all those who benefit, what are their characteristics?
- Characterizing supercompliers useful in Marginal Value of Public Funds (MVPF) analysis
 - Illustration using two job training experiments

• Exposition focuses on binary Y; builds on LATE assumptions + outcome monotonicity

Assumptions jointly testable

Supercomplier characteristics distribution point identified

Can be estimated using ivregress

Presentation Outline

- Introduction
- Statistical Framework
 - Set-up
 - Identification
 - Estimation
- Value in characterizing supercompliers
 - MVPF analysis
- Empirical Illustration
 - Job Corps
 - JTPA
- Conclusion

3

A D A A B A A B A A B A

Statistical Framework: Set-up

イロト イポト イヨト イヨト

э

Observables

- Z: treatment assignment; D: treatment take-up; Y: outcome; X: characteristics
 - Z, D, Y: binary; $Y = 1 \Rightarrow$ good outcome

3

6/32

イロト イポト イヨト イヨト

Observables

- Z: treatment assignment; D: treatment take-up; Y: outcome; X: characteristics
 - Z, D, Y: binary; $Y = 1 \Rightarrow$ good outcome
 - Potential treatments: D_z ; potential outcomes: Y_{zd}

э

Observables

- Z: treatment assignment; D: treatment take-up; Y: outcome; X: characteristics
 - Z, D, Y: binary; $Y = 1 \Rightarrow$ good outcome
 - Potential treatments: D_z; potential outcomes: Y_{zd}

Assumptions

- Random Assignment: Z indep. to potential treatments/outcomes and X
- Exclusion: $Y_{1d} = Y_{0d} \equiv Y_d$
- Treatment Monotonicity: $\Pr(D_1 \geqslant D_0) = 1$
- First Stage: $Pr(D_1 > D_0) > 0$

Observables

- Z: treatment assignment; D: treatment take-up; Y: outcome; X: characteristics
 - Z, D, Y: binary; $Y = 1 \Rightarrow$ good outcome
 - Potential treatments: D_z; potential outcomes: Y_{zd}

Assumptions

- Random Assignment: Z indep. to potential treatments/outcomes and X
- Exclusion: $Y_{1d} = Y_{0d} \equiv Y_d$
- Treatment Monotonicity: $\Pr(D_1 \ge D_0) = 1$
- First Stage: $Pr(D_1 > D_0) > 0$
- Outcome Monotonicity: $Pr(Y_1 \ge Y_0) = 1$
- Reduced Form: $Pr(D_1 > D_0, Y_1 > Y_0) > 0$

(Extended) Principal Strata

• $(D_1, D_0) \Rightarrow$ Principal strata of (treatment) always-takers, never-takers, compliers, defiers

э

(Extended) Principal Strata

- $(D_1, D_0) \Rightarrow$ Principal strata of (treatment) always-takers, never-takers, compliers, defiers
- $(Y_1, Y_0) \Rightarrow$ Definitions of (outcome) always-takers, never-takers, compliers, defiers

7/32

・ロット 全部 マント・ロット

(Extended) Principal Strata

- $(D_1, D_0) \Rightarrow$ Principal strata of (treatment) always-takers, never-takers, compliers, defiers
- $(Y_1, Y_0) \Rightarrow$ Definitions of (outcome) always-takers, never-takers, compliers, defiers
- $(D_1, D_0, Y_1, Y_0) \Rightarrow$ 16 (4 × 4) extended principal strata; 9 (3 × 3) with mono. assumptions

(Extended) Principal Strata

- $(D_1, D_0) \Rightarrow$ Principal strata of (treatment) always-takers, never-takers, compliers, defiers
- $(Y_1, Y_0) \Rightarrow$ Definitions of (outcome) always-takers, never-takers, compliers, defiers
- $(D_1, D_0, Y_1, Y_0) \Rightarrow 16 (4 \times 4)$ extended principal strata; 9 (3 × 3) with mono. assumptions

Supercompliers $(D_1 > D_0, Y_1 > Y_0)$: only group to benefit from gaining treat. eligib.

(Extended) Principal Strata

- $(D_1, D_0) \Rightarrow$ Principal strata of (treatment) always-takers, never-takers, compliers, defiers
- $(Y_1, Y_0) \Rightarrow$ Definitions of (outcome) always-takers, never-takers, compliers, defiers
- $(D_1, D_0, Y_1, Y_0) \Rightarrow 16 (4 \times 4)$ extended principal strata; 9 (3 × 3) with mono. assumptions

Supercompliers $(D_1 > D_0, Y_1 > Y_0)$: only group to benefit from gaining treat. eligib.

• For treatment always takers + never takers, D does not change with Z

(Extended) Principal Strata

- $(D_1, D_0) \Rightarrow$ Principal strata of (treatment) always-takers, never-takers, compliers, defiers
- $(Y_1, Y_0) \Rightarrow$ Definitions of (outcome) always-takers, never-takers, compliers, defiers
- $(D_1, D_0, Y_1, Y_0) \Rightarrow 16 (4 \times 4)$ extended principal strata; 9 (3 × 3) with mono. assumptions

Supercompliers $(D_1 > D_0, Y_1 > Y_0)$: only group to benefit from gaining treat. eligib.

- For treatment always takers + never takers, D does not change with Z
- For outcome always takers + never takers, Y does not change with D

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Statistical Framework: Identification

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

Characterizing Compliers and Supercompliers

Compliers (Abadie 2003; Angrist and Pischke 2009)

share:
$$\Pr(D_1 > D_0) = E[D|Z = 1] - E[D|Z = 0]$$

average X: $E[X|D_1 > D_0] = E[\kappa X] / \Pr(D_1 > D_0)$
average Y_d (d = 0, 1): $E[Y_d|D_1 > D_0] = E[\kappa_d Y] / \Pr(D_1 > D_0)$

where
$$\kappa \equiv 1 - \frac{D(1-Z)}{\Pr(Z=0)} - \frac{(1-D)Z}{\Pr(Z=1)}$$
, $\kappa_0 \equiv \frac{(1-D)(1-Z)}{\Pr(Z=0)} - \frac{(1-D)Z}{\Pr(Z=1)}$, $\kappa_1 \equiv \frac{DZ}{\Pr(Z=1)} - \frac{D(1-Z)}{\Pr(Z=0)}$

э

Characterizing Compliers and Supercompliers

Compliers (Abadie 2003; Angrist and Pischke 2009)

$$\begin{array}{ll} {\rm share:} \ \ {\sf Pr}(D_1>D_0)=E[D|Z=1]-E[D|Z=0]\\ {\rm average} \ X: \ E[X|D_1>D_0]=E[\kappa X]/\,{\sf Pr}(D_1>D_0)\\ {\rm average} \ Y_d \ (d=0,1): \ E[Y_d|D_1>D_0]=E[\kappa_d\,Y]/\,{\sf Pr}(D_1>D_0) \end{array}$$

where
$$\kappa \equiv 1 - \frac{D(1-Z)}{\Pr(Z=0)} - \frac{(1-D)Z}{\Pr(Z=1)}$$
, $\kappa_0 \equiv \frac{(1-D)(1-Z)}{\Pr(Z=0)} - \frac{(1-D)Z}{\Pr(Z=1)}$, $\kappa_1 \equiv \frac{DZ}{\Pr(Z=1)} - \frac{D(1-Z)}{\Pr(Z=0)}$

Supercompliers:

share:
$$\Pr(D_1 > D_0, Y_1 > Y_0) = E[Y|Z = 1] - E[Y|Z = 0]$$

average X: $E[X|D_1 > D_0, Y_1 > Y_0] = E[\pi X] / \Pr(D_1 > D_0, Y_1 > Y_0)$

where $\pi \equiv \kappa - \kappa_0 Y - \kappa_1 (1 - Y)$

3

8/32

Supercomplier characteristics can also be identified by a Wald-type estimand

$$E[X|D_1 > D_0, Y_1 > Y_0] = \frac{E[XY|Z=1] - E[XY|Z=0]}{E[Y|Z=1] - E[Y|Z=0]}$$

3

9/32

Supercomplier characteristics can also be identified by a Wald-type estimand

$$E[X|D_1 > D_0, Y_1 > Y_0] = \frac{E[XY|Z=1] - E[XY|Z=0]}{E[Y|Z=1] - E[Y|Z=0]}$$

D does not enter estimand: Identification applies regardless of degree of treatment compliance

~	_		
(omey	Eng	euna	Per
Comey,	Ling, i	Leung,	

э

Relaxing restriction that Y be binary; supercompliers still those with $D_1 > D_0$, $Y_1 > Y_0$

$$Pr(supercomplier) \cdot E[Y_1 - Y_0|supercomplier] = E[Y|Z = 1] - E[Y|Z = 0]$$

$$\frac{E[X(Y_1 - Y_0)|\text{supercomplier}]}{E[Y_1 - Y_0|\text{supercomplier}]} = \frac{E[XY|Z = 1] - E[XY|Z = 0]}{E[Y|Z = 1] - E[Y|Z = 0]}$$

э

10/32

(日)

Beyond averages: Replace X with $1_{[X \leq x]}$ for any x and identify distribution of X

X can be multi-dimensional

< <p>Image: A matrix

э

Violation of outcome monotonicity: bias \propto share of "outcome defiers" ($D_1 > D_0, Y_1 < Y_0$)

$$\mathsf{Bias} = \xi \cdot \{ E[X|D_1 > D_0, Y_1 > Y_0] - E[X|D_1 > D_0, Y_1 < Y_0] \}$$

where

$$\xi \equiv \frac{\Pr(D_1 > D_0, Y_1 < Y_0)}{\Pr(D_1 > D_0, Y_1 < Y_0) + \Pr(D_1 > D_0, Y_1 > Y_0)}$$

Comey, Eng, Leung, Pei

November 7, 2024 12 / 32

3

• Shares/characteristics of two remaining groups within treatment compliers identified

$$Pr(D_1 > D_0, Y_0 = Y_1 = 1) = E[\kappa_0 Y] = E[(1 - D)Y|Z = 1] - E[(1 - D)Y|Z = 0]$$
$$E[X|D_1 > D_0, Y_0 = Y_1 = 1] = \frac{E[\kappa_0 YX]}{E[\kappa_0 Y]} = \frac{E[(1 - D)YX|Z = 1] - E[(1 - D)YX|Z = 0]}{E[(1 - D)Y|Z = 1] - E[(1 - D)Y|Z = 0]}$$

$$\begin{aligned} &\mathsf{Pr}(D_1 > D_0, Y_0 = Y_1 = 0) = E[\kappa_1(1 - Y)] = E[D(1 - Y)|Z = 1] - E[D(1 - Y)|Z = 0] \\ & E[X|D_1 > D_0, Y_0 = Y_1 = 0] = \frac{E[\kappa_1(1 - Y)X]}{E[\kappa_1(1 - Y)]} = \frac{E[D(1 - Y)X|Z = 1] - E[D(1 - Y)X|Z = 0]}{E[D(1 - Y)|Z = 1] - E[D(1 - Y)|Z = 0]} \end{aligned}$$

- ∢ ⊒ →

э

13/32

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Adding a Mediator: Causal chain $Z \rightarrow D \rightarrow M \rightarrow Y$

э.
Remarks on Identification: 6

Adding a Mediator: Causal chain $Z \rightarrow D \rightarrow M \rightarrow Y$

If we extend exclusion restriction and monotonicity assumption to cover M,

• i.e.,
$$Y_{zdm}=Y_m$$
, $M_{zd}=M_d$, and $M_1 \geqslant M_0$,

then previous estimands identify share + characteristics of superdupercompliers

• i.e., those with
$$D_1 > D_0, M_1 > M_0, Y_1 > Y_0$$

Remarks on Identification: 6

Adding a Mediator: Causal chain $Z \rightarrow D \rightarrow M \rightarrow Y$

If we extend exclusion restriction and monotonicity assumption to cover M,

• i.e.,
$$Y_{zdm}=Y_m$$
, $M_{zd}=M_d$, and $M_1 \geqslant M_0$,

then previous estimands identify share + characteristics of superdupercompliers

• i.e., those with $D_1 > D_0, M_1 > M_0, Y_1 > Y_0$

Can also identify shares and characteristics of those with

•
$$D_1 > D_0, M_1 = M_0 = m$$

•
$$D_1 > D_0, M_1 > M_0, Y_1 = Y_0 = y$$

Relative to standard LATE assumptions, outcome monotonicity warrants more discussion

э

< ロ ト < 同 ト < ヨ ト < ヨ ト

Relative to standard LATE assumptions, outcome monotonicity warrants more discussion

• Existing studies have made similar assumptions

- Existing studies have made similar assumptions
 - Manski (1997); Manski and Pepper (2000); Lee (2009)

- Existing studies have made similar assumptions
 - Manski (1997); Manski and Pepper (2000); Lee (2009)
- Plausibility of outcome monotonicity depends on context

- Existing studies have made similar assumptions
 - Manski (1997); Manski and Pepper (2000); Lee (2009)
- Plausibility of outcome monotonicity depends on context
 - Plausible: training \Rightarrow better labor market outcomes
 - Plausible: health insurance coverage \Rightarrow more doctor visits

- Existing studies have made similar assumptions
 - Manski (1997); Manski and Pepper (2000); Lee (2009)
- Plausibility of outcome monotonicity depends on context
 - Plausible: training \Rightarrow better labor market outcomes
 - ► Plausible: health insurance coverage ⇒ more doctor visits
 - Ambiguous: health insurance coverage and out-of-pocket spending

(i) Under our assumptions, the following inequalities hold

$$\begin{aligned} \Pr(Y = 0, D = 1 | Z = 1) - \Pr(Y = 0, D = 1 | Z = 0) &\ge 0\\ \Pr(Y = 1, D = 0 | Z = 0) - \Pr(Y = 1, D = 0 | Z = 1) &\ge 0\\ \Pr(Y = 1 | Z = 1) - \Pr(Y = 1 | Z = 0) &\ge 0 \end{aligned}$$

(ii) If these inequalities hold, there exists a joint distribution of $(Y_{11}, Y_{10}, Y_{01}, Y_{00}, D_1, D_0, Z)$ that satisfies our assumptions and induces the observed distribution of (Y, D, Z).

16/32

イロト イポト イヨト イヨト

Statistical Framework: Estimation

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Alternative estimands for average complier characteristics

1
$$E[\kappa X] / \{E[D|Z=1] - E[D|Z=0]\}$$

э

17/32

- Alternative estimands for average complier characteristics
 - **1** $E[\kappa X] / \{E[D|Z=1] E[D|Z=0]\}$
 - **2** { $\Pr(D=1|Z=1)E[X|D=1, Z=1] \Pr(D=1|Z=0)E[X|D=1, Z=0]$ }/fs

17 / 32

• Alternative estimands for average complier characteristics

$$E[\kappa X] / \{ E[D|Z=1] - E[D|Z=0] \}$$

2 {Pr
$$(D = 1 | Z = 1)E[X | D = 1, Z = 1] - Pr(D = 1 | Z = 0)E[X | D = 1, Z = 0]$$
}/fs

$$\{E[DX|Z=1] - E[DX|Z=0]\} / \{E[D|Z=1] - E[D|Z=0]\}$$

э

• Alternative estimands for average complier characteristics

$$E[\kappa X] / \{E[D|Z = 1] - E[D|Z = 0]\}$$

$$\{Pr(D = 1|Z = 1)E[X|D = 1, Z = 1] - Pr(D = 1|Z = 0)E[X|D = 1, Z = 0]\} / \{s \\ \{E[DX|Z = 1] - E[DX|Z = 0]\} / \{E[D|Z = 1] - E[D|Z = 0]\}$$

$$\{E[(1 - D)X|Z = 1] - E[(1 - D)X|Z = 0]\} / \{E[1 - D|Z = 1] - E[1 - D|Z = 0]\}$$

э

• Alternative estimands for average complier characteristics

•
$$E[\kappa X] / \{E[D|Z = 1] - E[D|Z = 0]\}$$

• $\{\Pr(D = 1|Z = 1)E[X|D = 1, Z = 1] - \Pr(D = 1|Z = 0)E[X|D = 1, Z = 0]\} / \{s$
• $\{E[DX|Z = 1] - E[DX|Z = 0]\} / \{E[D|Z = 1] - E[D|Z = 0]\}$
• $\{E[(1 - D)X|Z = 1] - E[(1 - D)X|Z = 0]\} / \{E[1 - D|Z = 1] - E[1 - D|Z = 0]\}$
• Average of 3 and 4

э

• Alternative estimands for average complier characteristics

$$\begin{array}{l} E[\kappa X] / \{E[D|Z=1] - E[D|Z=0]\} \\ & \{\Pr(D=1|Z=1)E[X|D=1,Z=1] - \Pr(D=1|Z=0)E[X|D=1,Z=0]\} / \text{fs} \\ & \{E[DX|Z=1] - E[DX|Z=0]\} / \{E[D|Z=1] - E[D|Z=0]\} \\ & \{E[(1-D)X|Z=1] - E[(1-D)X|Z=0]\} / \{E[1-D|Z=1] - E[1-D|Z=0]\} \\ & \text{Overage of 3 and 4} \end{array}$$

- All estimands can be implemented with ivregress
 - Sample analogs of 2 and 3 are equal
 - implementation: ivregress 2sls DX (D = Z)

Alternative estimands for average complier characteristics

1 $E[\kappa X] / \{E[D|Z=1] - E[D|Z=0]\}$ 2 { $\Pr(D=1|Z=1)E[X|D=1, Z=1] - \Pr(D=1|Z=0)E[X|D=1, Z=0]$ }/fs **3** $\{E[DX|Z=1] - E[DX|Z=0]\} / \{E[D|Z=1] - E[D|Z=0]\}$ $\{ E[(1-D)X|Z=1] - E[(1-D)X|Z=0] \} / \{ E[1-D|Z=1] - E[1-D|Z=0] \}$ Average of 3 and 4

- All estimands can be implemented with ivregress
 - Sample analogs of 2 and 3 are equal
 - implementation: ivregress 2sls DX (D = Z)
- Sample analog of 1 is the same as that of

$$\frac{E[\tilde{D}X|Z=1] - E[\tilde{D}X|Z=0]}{E[\tilde{D}|Z=1] - E[\tilde{D}|Z=0]}$$

where $\tilde{D} = D - \Pr(Z = 0)$

implementation: ivregress 2sls DtildeX (Dtilde = Z)

17/32

Supercompliers characteristics can be analogously estimated, e.g., with

• ivregress 2sls YX (Y = Z)

3

Randomization in many experiments is stratified

• Common practice to include strata fixed effects W in regressions

э

< ロ ト < 同 ト < ヨ ト < ヨ ト

Randomization in many experiments is stratified

• Common practice to include strata fixed effects W in regressions

How does inclusion of W affect interpretation of supercomplier characteristics?

Comev.	Eng.	Leung.	Pei

Randomization in many experiments is stratified

• Common practice to include strata fixed effects W in regressions

How does inclusion of W affect interpretation of supercomplier characteristics?

- Assuming
 - Conditional independence
 - 2 Non-zero conditional reduced form
 - Saturation of strata fixed effects

Randomization in many experiments is stratified

• Common practice to include strata fixed effects W in regressions

How does inclusion of W affect interpretation of supercomplier characteristics?

- Assuming
 - Conditional independence
 - 2 Non-zero conditional reduced form
 - Saturation of strata fixed effects
- 2sls estimand identifies a nonnegatively weighted average of supercomplier characteristics:

$$\beta_{2SLS} = E \left[\omega_W E[X | \text{supercomplier}, W] \right]$$

with $\omega_W \geq 0$ across all strata W.

Empirical Value of Characterizing Supercompliers?

э

< ロ ト < 同 ト < ヨ ト < ヨ ト

Empirical Value of Characterizing Supercompliers?

• Characterizing supercompliers offers description of beneficiaries

Can compare supercompliers to different populations

20 / 32

Empirical Value of Characterizing Supercompliers?

• Characterizing supercompliers offers description of beneficiaries

Can compare supercompliers to different populations

• Characterizing supercompliers useful for MVPF analysis

Facilitate incorporation of social welfare weights

Comey,	Eng,	Leung,	Pei

- Hendren and Sprung-Keyser (2020), "HSK", advocate for systematic reporting of MVPF
 - Aids comparison of government programs

э

- Hendren and Sprung-Keyser (2020), "HSK", advocate for systematic reporting of MVPF
 - Aids comparison of government programs
- Social welfare: Welfare $\equiv \sum_i \eta_i U_i$
 - ► U_i: individual utility expressed in dollar terms
 - η_i : social welfare weight (impact of transferring \$1 to individual *i*)

イロト イポト イヨト イヨト

- Hendren and Sprung-Keyser (2020), "HSK", advocate for systematic reporting of MVPF
 - Aids comparison of government programs
- Social welfare: Welfare $\equiv \sum_i \eta_i U_i$
 - ► U_i: individual utility expressed in dollar terms
 - η_i : social welfare weight (impact of transferring \$1 to individual *i*)
- Impact of a policy change, denoted by dp, on social welfare:

$$\frac{\mathsf{dWelfare}}{\mathsf{d}p} = \sum_{i} \eta_{i} \frac{\mathsf{d}U_{i}}{\mathsf{d}p} \equiv \sum_{i} \eta_{i} WTP_{i}$$

▶ WTP = willingness to pay; Captures benefits of policy change

- Hendren and Sprung-Keyser (2020), "HSK", advocate for systematic reporting of MVPF
 - Aids comparison of government programs
- Social welfare: Welfare $\equiv \sum_i \eta_i U_i$
 - ► U_i: individual utility expressed in dollar terms
 - η_i : social welfare weight (impact of transferring \$1 to individual *i*)
- Impact of a policy change, denoted by dp, on social welfare:

$$\frac{\mathsf{dWelfare}}{\mathsf{d}p} = \sum_{i} \eta_{i} \frac{\mathsf{d}U_{i}}{\mathsf{d}p} \equiv \sum_{i} \eta_{i} WTP_{i}$$

- ▶ WTP = willingness to pay; Captures benefits of policy change
- HSK MVPF definition

$$\mathsf{MVPF} = \sum_i WTP_i/G$$

- ► G: impact of dp on government budget
- $\bullet\,$ Note: η not in MVPF definition, presumably due to difficulty in implementation .

MVPF calculation (focusing on WTP)

- For policies that include a transfer
 - WTP includes dollar value of transfer

< ∃⇒

э

MVPF calculation (focusing on WTP)

- For policies that include a transfer
 - WTP includes dollar value of transfer
- If policies affect later life outcomes, e.g., human capital, health
 - WTP includes dollar values of these causal impacts

22 / 32

MVPF calculation (focusing on WTP)

- For policies that include a transfer
 - WTP includes dollar value of transfer
- If policies affect later life outcomes, e.g., human capital, health
 - WTP includes dollar values of these causal impacts
 - Causal impacts possibly measured on a subpopulation, e.g., LATE

- If WTP is measured as the effect of policy on outcome Y
 - $WTP_i = Y_{1i} Y_{0i}$

3

• If WTP is measured as the effect of policy on outcome Y

$$\forall WTP_i = Y_{1i} - Y_{0i}$$

• Weighted average WTP for the complier group is

$$\underbrace{E[\eta_i(Y_{1i} - Y_{0i})|\text{complier}]}_{\text{Weighted WTP}} = E[\eta_i|\text{supercomplier}] \underbrace{\text{LATE}_Y}_{\text{Unweighted WTP}}$$

э

23 / 32

• If WTP is measured as the effect of policy on outcome Y

$$\blacktriangleright WTP_i = Y_{1i} - Y_{0i}$$

• Weighted average WTP for the complier group is

$$\underbrace{E[\eta_i(Y_{1i} - Y_{0i}) | \text{complier}]}_{\text{Weighted WTP}} = E[\eta_i | \text{supercomplier}] \underbrace{\text{LATE}_Y}_{\text{Unweighted WTP}}$$

• $E[\eta_i|$ supercomplier] is the ratio of weighted WTP over unweighted WTP

• If WTP is measured as the effect of policy on outcome Y

$$\blacktriangleright WTP_i = Y_{1i} - Y_{0i}$$

• Weighted average WTP for the complier group is

$$\underbrace{E[\eta_i(Y_{1i} - Y_{0i})|\text{complier}]}_{\text{Weighted WTP}} = E[\eta_i|\text{supercomplier}] \underbrace{\text{LATE}_Y}_{\text{Unweighted WTP}}$$

- $E[\eta_i|$ supercomplier] is the ratio of weighted WTP over unweighted WTP
 - If $\eta_i = h(X_i)$ one can estimate it with our machinery
Supercompliers and MVPF

• If WTP is measured as the effect of policy on outcome Y

$$\blacktriangleright WTP_i = Y_{1i} - Y_{0i}$$

• Weighted average WTP for the complier group is

$$\underbrace{E[\eta_i(Y_{1i} - Y_{0i})|\text{complier}]}_{\text{Weighted WTP}} = E[\eta_i|\text{supercomplier}] \underbrace{\text{LATE}_Y}_{\text{Unweighted WTP}}$$

- $E[\eta_i|$ supercomplier] is the ratio of weighted WTP over unweighted WTP
 - If $\eta_i = h(X_i)$ one can estimate it with our machinery
- If $E[X_i|$ supercomplier] is systematically reported
 - Reader may construct weighted WTP with own weights without microdata access

Empirical Illustration

~	_		
(omey	Eng	eung	Pai
Comey.	LILE.	Leune.	

э

23/32

イロト イポト イヨト イヨト

National Job Corps Study: Randomized experiment to evaluate Job Corps

• Job Corps: residential ed and voc training program targeting disadvantaged youth

イロト イポト イヨト イヨト

э

National Job Corps Study: Randomized experiment to evaluate Job Corps

- Job Corps: residential ed and voc training program targeting disadvantaged youth
- Participants randomized between 1994 and 1995

24 / 32

イロト イポト イヨト イヨト

National Job Corps Study: Randomized experiment to evaluate Job Corps

- Job Corps: residential ed and voc training program targeting disadvantaged youth
- Participants randomized between 1994 and 1995
- We use data from the 48-month follow-up analysis sample (N = 11, 313)

3

24 / 32

・ロット 全部 マント・ロット

National Job Corps Study: Randomized experiment to evaluate Job Corps

- Job Corps: residential ed and voc training program targeting disadvantaged youth
- Participants randomized between 1994 and 1995
- We use data from the 48-month follow-up analysis sample (N = 11, 313)

National JTPA Study: Randomized experiment to evaluate JTPA training programs

• JTPA: target economically disadvantaged adults and out-of-school youths

24 / 32

National Job Corps Study: Randomized experiment to evaluate Job Corps

- Job Corps: residential ed and voc training program targeting disadvantaged youth
- Participants randomized between 1994 and 1995
- We use data from the 48-month follow-up analysis sample (N = 11, 313)

National JTPA Study: Randomized experiment to evaluate JTPA training programs

- JTPA: target economically disadvantaged adults and out-of-school youths
- Participants randomized between 1987 and 1989

24 / 32

National Job Corps Study: Randomized experiment to evaluate Job Corps

- Job Corps: residential ed and voc training program targeting disadvantaged youth
- Participants randomized between 1994 and 1995
- We use data from the 48-month follow-up analysis sample (N = 11, 313)

National JTPA Study: Randomized experiment to evaluate JTPA training programs

- JTPA: target economically disadvantaged adults and out-of-school youths
- Participants randomized between 1987 and 1989
- We use data from the 30-month follow-up analysis sample
 - Focusing on adult females (N = 6, 102)

Job Corps Supercomplier Characteristics; Outcome: Receiving GED

	Population	Complier	Supercomplier	Diff	
	Mean	Mean	Mean	Pop-SC	C-SC
Female	38%	38%	48%	**	***
White	25%	25%	34%	**	**
Age >=20	17%	16%	21%		*
Never Arrested	69%	71%	78%	* *	
Prev. Empl.	60%	61%	75%	***	***
Income <\$3K	16%	15%	11%	*	*
Income \$3-6K	13%	12%	9%		
Income \$6-9K	6%	7%	5%		
Income \$9-12K	6%	6%	9%		
Income >\$12K	59%	60%	67%	*	*

Job Corps Supercomplier Characteristics; Outcome: Voc. Certificate

	Population	Complier	Supercomplier	Diff	
	Mean	Mean	Mean	Pop-SC	C-SC
Female	41%	39%	44%		**
White	27%	27%	31%	**	***
Age >=20	27%	25%	28%		
Never Arrested	71%	73%	78%	***	***
Prev. Empl.	64%	64%	69%	**	***
Income <\$3K	16%	15%	16%		
Income \$3-6K	13%	12%	12%		
Income \$6-9K	7%	7%	9%		
Income \$9-12K	6%	6%	6%		
Income >\$12K	59%	59%	57%		

Job Corps Supercomplier Characteristics; Outcome: Qtr16 Earnings

	Population	Complier	Supercomplier	Dif	f
	Mean	Mean	Mean	Pop-SC	C-SC
Female	41%	39%	38%		
White	27%	27%	65%	***	***
Age >=20	27%	25%	55%	**	**
Never Arrested	72%	74%	79%		
Prev. Empl.	64%	64%	75%		
Income <\$3K	16%	15%	10%		
Income \$3-6K	13%	12%	1%		
Income \$6-9K	7%	7%	1%		
Income \$9-12K	6%	6%	7%		
Income >\$12K	58%	59%	81%		

(a)

э

- HSK report Job Corps MVPF as 0.15
 - Based on 20-year follow-up analysis by Schochet (2018)

3

28 / 32

(a)

- HSK report Job Corps MVPF as 0.15
 - Based on 20-year follow-up analysis by Schochet (2018)
- Schochet (2018) uses tax data, which are not for public use

3

イロト イポト イヨト イヨト

- HSK report Job Corps MVPF as 0.15
 - Based on 20-year follow-up analysis by Schochet (2018)
- Schochet (2018) uses tax data, which are not for public use
 - Cannot calculate analogous weighted MVPF comparable to HSK's MVPF

∃ ⇒

- HSK report Job Corps MVPF as 0.15
 - Based on 20-year follow-up analysis by Schochet (2018)
- Schochet (2018) uses tax data, which are not for public use
 - Cannot calculate analogous weighted MVPF comparable to HSK's MVPF
- Our survey data based results tentatively suggest weighted MVPF would be even smaller

~	_		-
(omey	Eng	eung	Per
Comey,	Lug,	Leung,	

JTPA Supercomplier Characteristics; Outcome: Total 30-Month Earnings

	Population	Complier	Supercomplier	Diff	
	Mean	Mean	Mean	Pop-SC	C-SC
Black	26%	24%	37%		
Hispanic	12%	13%	2%		
High School/GED	68%	69%	70%		
Ever Rec Voc Train	45%	45%	48%		
Annual Earnings	2489	2461	1773		
Worked 1-12 Weeks	16%	16%	21%		
Worked 13-52 Weeks	43%	45%	13%		*
Received AFDC	38%	38%	49%		
Income <\$3K	31%	29%	46%		
Income \$3-6K	34%	35%	15%		
Income \$6-9K	16%	16%	26%		
Income \$9-12K	9%	9%	4%		
Income >\$12K	9%	10%	8%		
				Image:	► < Ξ > <

Comey, Eng, Leung, Pei

Supercompliers

November 7, 2024

э

• Picking social welfare weights: Textbook social welfare function $\Psi(u) = rac{u^{1-\phi}}{1-\phi}$

3

30 / 32

メロト メポト メヨト メヨト

- Picking social welfare weights: Textbook social welfare function $\Psi(u) = \frac{u^{1-\phi}}{1-\phi}$
 - When $\phi = 0$, \$1 transfer has same impact on social welfare regardless of income

メロト メポト メヨト メヨト

- Picking social welfare weights: Textbook social welfare function $\Psi(u) = \frac{u^{1-\phi}}{1-\phi}$
 - When $\phi = 0$, \$1 transfer has same impact on social welfare regardless of income
 - \blacktriangleright When $\phi = 0.5$, \$1 transfer to someone with \$1.5K \sim \$1.73 transfer to someone with 4.5K

3

(日) (四) (日) (日) (日)

- Picking social welfare weights: Textbook social welfare function $\Psi(u) = \frac{u^{1-\phi}}{1-\phi}$
 - When $\phi = 0$, \$1 transfer has same impact on social welfare regardless of income
 - \blacktriangleright When $\phi=$ 0.5, \$1 transfer to someone with \$1.5K \sim \$1.73 transfer to someone with 4.5K
 - \blacktriangleright When $\phi=$ 1, \$1 transfer to someone with \$1.5K \sim \$3 transfer to someone with 4.5K

= 990

(a)

- Picking social welfare weights: Textbook social welfare function $\Psi(u) = \frac{u^{1-\phi}}{1-\phi}$
 - When $\phi = 0$, \$1 transfer has same impact on social welfare regardless of income
 - ▶ When $\phi = 0.5$, \$1 transfer to someone with $1.5K \sim 1.73$ transfer to someone with 4.5K
 - When $\phi = 1$, \$1 transfer to someone with \$1.5K \sim \$3 transfer to someone with 4.5K
- Unweighted ($\phi = 0$) JTPA MVPF reported by HSK is 1.38; Weighted MVPF is

30 / 32

- Picking social welfare weights: Textbook social welfare function $\Psi(u) = \frac{u^{1-\phi}}{1-\phi}$
 - When $\phi = 0$, \$1 transfer has same impact on social welfare regardless of income
 - \blacktriangleright When $\phi=$ 0.5, \$1 transfer to someone with \$1.5K \sim \$1.73 transfer to someone with 4.5K
 - \blacktriangleright When $\phi=$ 1, \$1 transfer to someone with \$1.5K \sim \$3 transfer to someone with 4.5K
- Unweighted ($\phi = 0$) JTPA MVPF reported by HSK is 1.38; Weighted MVPF is
 - ▶ 1.63 when $\phi = 0.5$
 - ▶ 1.97 when $\phi = 1$

- Picking social welfare weights: Textbook social welfare function $\Psi(u) = \frac{u^{1-\phi}}{1-\phi}$
 - When $\phi = 0$, \$1 transfer has same impact on social welfare regardless of income
 - \blacktriangleright When $\phi=$ 0.5, \$1 transfer to someone with \$1.5K \sim \$1.73 transfer to someone with 4.5K
 - \blacktriangleright When $\phi=$ 1, \$1 transfer to someone with \$1.5K \sim \$3 transfer to someone with 4.5K
- Unweighted ($\phi = 0$) JTPA MVPF reported by HSK is 1.38; Weighted MVPF is
 - 1.63 when $\phi = 0.5$
 - 1.97 when $\phi = 1$
- Reader can compute own weighted MVPF if relevant supercomplier char. are reported

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusion

- We study what we call "supercompliers"
 - Whose D responds positively to Z and whose Y responds positively to D
 - Supercompliers are the only ones who benefit from gaining treatment eligibility
- Supercomplier characteristics identified under LATE assumptions + outcome monotonicity
- Identification result leads to natural IV estimators
- Illustrate the value of our tools in two training programs
 - Describing supercompliers can facilitate calculation of MVPF with social weights

Thank you!

~	_		D
Comey	Enσ	eung	Pe
COntroy,		Loung,	

▲□▶ ▲圖▶ ▲国▶ ▲国≯