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Motivation
We often estimate causal effects or structural parameters using IVs that
combine multiple sources of variation via a known formula

We often think that some, but not all, of these sources are exogenous

Ex. 1: zi = sigi , where gi is drawn in an RCT and si is a predetermined
variable expected to predict the first stage (Coussens and Spiess, 2021)

Ex. 2: Shift-share zi = ∑k sikgk , where gk is a shift varying at a different
“level” (e.g. industries) and sik are local (e.g. regional) exposure shares

Ex. 3: Formulas capturing spatial/network/GE spillovers of exogenous
shocks to other units with heterogeneous/non-random exposure

E.g. a zi counting the # of neighbors selected for an intervention

How can we just leverage the exogenous shocks for identification?
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Identification via Expected Instrument Adjustment

The Problem: non-random exposure to exogenous shocks generally
makes such formulas invalid instruments

Randomizing shocks ̸⇒ randomized formulas based on them

A Solution: use knowledge of the “design” of shocks to derive the
expected instrument µi : the average zi across repeated draws of shocks

E.g. redraw gi from an RCT protocol or permute shocks which could
well have been randomly exchanged, recompute+average the formula

This µi is the sole confounder of zi , akin to a propensity score

Controlling for µi or using the recentered IV z̃i = zi −µi avoids bias

Or controlling for wi that are known to linearly span µi
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(Some) Empirical Settings Where This May be Relevant

Network spillovers: Miguel and Kremer 2004, Gerber and Green 2012,
Acemoglu et al. 2015, Jaravel et al. 2018, Carvalho et al. 2020

Effects of transportation: Baum-Snow 2007, Donaldson and Hornbeck
2016, Lin 2017, Donaldson 2018, Ahlfeldt and Feddersen 2018, Bartelme 2018

Simulated instruments: Currie and Gruber 1996a,b, Cullen and Gruber
2000, East and Kuka 2015, Cohodes et al. 2016, Frean et al. 2017

Shift-share/Bartik IV: Autor et al. 2013, Adão et al. 2021, Kovak 2013

Nonlinear shift-share IV: Boustan et al. 2013, Berman et al. 2015, Basso
and Peri 2015, Chodorow-Reich and Wieland 2020, Derenoncourt 2021

IVs from assignment mechanisms: Abdulkadiroglu et al. 2017, 2019

Weather IVs: Gomez et al. 2007, Madestam et al. 2013

IVs for mass media access: Olken 2009, Yanagizawa-Drott 2014
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Example: Market Access Effects in an RCT

Economic theory suggests transportation upgrades affect local outcomes
(e.g. land value) of regions i by increasing their market access (MA):

∆logVi = β∆logMAi + εi ,

where MAit = ∑
j

τ(gt , loci , locj)
−1popj ,

for road network gt in periods t = 1,2, region locations locj
(co-determining travel cost τ), and regional population popj

Imagine an experiment that randomly connects adjacent regions by road

MA only grows because of the random transportation shocks

So can we view variation in MA growth as random and just run OLS?

No, because of the non-random components of the formula
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Illustration: Market Access on a Square Island

Start from no roads, assume equal population everywhere

0.00
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Illustration: Market Access on a Square Island

Randomly connect adjacent regions by road

and compute MA growth

0.00
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Illustration: Market Access on a Square Island

Randomly connect adjacent regions by road and compute MA growth

0.83
1.58
1.85
2.14
2.41
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Illustration: Market Access on a Square Island

Counterfactual roads and MA growth

0.91
1.56
2.05
2.28
2.59
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Illustration: Market Access on a Square Island

Counterfactual roads and MA growth

1.04
1.82
2.12
2.31
2.50
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Expected Market Access Growth µi

Some regions get systematically more MA

1.39
1.47
1.75
1.86
1.92
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Illustration: High-Speed Rail in China

149 lines were built or planned (as of April 2019)

9



Illustration: High-Speed Rail in China

The 83 lines actually built by 2016. Suppose timing is random
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Illustration: High-Speed Rail in China

A counterfactual draw of 83 lines by 2016
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Illustration: High-Speed Rail in China

Expected MA growth, µi
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Recentered MA growth

Recentered MA growth, ∆logMAi −µi
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General Setting

We have a model of yi = βxi + εi for a fixed population i = 1 . . .N

Extensions: heterogeneous effects, other controls, multiple
treatments, panel data...

We have a candidate instrument zi = fi(g ,s), where g is a vector of
shocks; s collects predetermined variables; fi(·) are known formulas

Applies to any zi which can be constructed from observed data
Nests reduced-form regressions: xi = zi

Allows g = (g1, . . . ,gK ) to vary at a different level than i

Assumptions:
1 Shocks are exogenous: g ⊥⊥ ε | w , for w = (s,q)
2 Conditional distribution G(g | w) is known (e.g. via randomization

protocol or uniform across permutations of g)
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Results
The expected instrument, µi = E [fi(g ,w) | w ]≡

∫
fi(g ,w)dG(g | w), is the

sole confounder generating bias:

E

[
1
N ∑

i
ziεi

]
= E

[
1
N ∑

i
µiεi

]
̸= 0, in general

The recentered instrument z̃i = zi −µi is a valid instrument for xi :

E

[
1
N ∑

i
z̃iεi

]
= 0

Regressions which control for µi also identify β (implicit recentering)

Consistency: with many shocks and z̃i weakly dependent across i
Robustness to heterogeneous treatment effects: z̃i identifies a
convex avg. of ∂yi/∂xi under appropriate first-stage monotonicity
Randomization inference provides exact confidence intervals for β

(under constant effects) and falsification tests
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Special Case: Linear Formulas

When zi = ∑k sikgk is linear in the shocks (i.e. shift-share IV), we need
only specify the conditional shock mean:

µi = E [zi | w ] = ∑
k

sikE [gk | w ]

and in fact we can work with a weaker shock exogeneity assumption
(see Borusyak, Hull, and Jaravel 2022)

If we assume E [gk | w ] = q′
kγ for some shock-level controls qk , this tells us

it’s enough to control for ci = ∑k sikqk

Special case: E [gk | w ] = µg (i.e. unconditionally exogenous shocks),
so ci is the “sum of shares” ∑k sik (often = 1 in practice)
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Contrast: Outcome-Based Models
Rather than focusing on the design of exogenous shocks, we could model
the unobserved error εi ’s dependence on w :

E [εi | g ,w ] = qi
′
γ, for qi ∈ w

E.g., if yi and xi are in first differences, E [εi | g ,w ] = γ is “parallel trends”

Goldsmith-Pinkham et al. (2020) formalize this approach for
shift-share IV: E [εi | g ,w ] = E [εi | sik ] = 0 for all shares sik

A very strong assumption, which makes any formula of (g ,w) a valid IV
E.g. individual shares in shift-share IV, or any transformation of them

In practice, researchers may have stronger priors on how observed shocks
are assigned than the right model for εi

Does parallel trends hold in logs vs. levels? (Roth and Sant’Anna ’23)
What are the right features of w to include in qi?
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Application 1: The China Shock (Autor et al. 2013)
ADH study the effects of rising Chinese import competition on US
commuting zones over two periods: 1991-2000 and 2000-2007

Treatment xit : local growth of Chinese imports in $1,000/worker
Main outcome yit : local change in manufacturing employment share

To address endogeneity, they use a shift-share IV zit = ∑n sintgnt

n: 397 SIC4 manufacturing industries × two periods
gnt : growth of Chinese imports in non-US economies per US worker
sint : lagged share of manufacturing industry n in total employment of
location i ; hence ∑n sint is i ’s manufacturing employment share

Design-based justification: random industry productivity shocks in China,
jointly affecting imports in the U.S. and elsewhere, proxied by gnt

If gnt is as-good-as-randomly assigned within (but not across)
periods, the expected instrument is µit = ∑n sint ×Postt

18
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ADH Balance Tests

Panel A regresses industry characteristics on the gnt shocks,
controlling for period FE

Panel B regresses location characteristics on the zit instrument,
controlling for manufacturing employment share × period FE

19



ADH Estimates

Note: columns 3-7 control for mfg. employment share × period FE

20



Application 2: Chinese HSR (Borusyak and Hull, 2023)

Let’s return to the motivating market access application

Setting: Chinese HSR; 83 lines built 2008–2016, 66 yet unbuilt

Market access: MAit = ∑k exp(−0.02τikt)pk,2000, where τikt is
HSR-affected travel time between prefecture capitals (Zheng and
Kahn, 2013) and pi ,2000 is prefecture i ’s population in 2000

Relate to employment growth in 274 prefectures, 2007-2016

Design: which planned lines opened by some date is as-good-as-random,
conditional on line observables (e.g. line length/complexity)

Expected market access growth given by permuting line openings
among observably similar lines

21
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HSR Lines and Market Access

Naive OLS compares dark (“treatment”) vs light (“control”) regions
22



Naive OLS Suggests a Big Market Access Effect...

Regression slope: 0.232 (0.075)
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... but we probably shouldn’t believe it
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HSR Lines and Counterfactuals

Counterfactuals permute which lines opened by 2016, conditional on length
24



An Example Counterfactual HSR Network

Seems ok...
25



Expected Market Access Across Counterfactuals

Darker regions see more MA growth regardless of which lines are built first
26



Recentered Market Access

Recentered IV compares region that saw more MA growth than expected
(in red) to those that saw less MA growth than expected (in blue) 27



Balance Tests

Recentered MA growth can’t be reliably predicted from geography

28



No Market Access Effect with Recentering/Controlling

29



Summary
A “design-based” approach to formula IVs sheds new light on longstanding
identification strategies in economics (e.g. shift-share IV)...

... while also suggesting novel strategies leveraging more complex
instrument constructions (e.g. market access models)

We’re still learning of new empirical settings using formula IVs!

Some open questions:

Asymptotic inference (non-standard clustering; e.g. Adao et al. ’19)

Estimated / machine learnt shock assignment processes?

Using recentered IV for structural models (stay tuned...)

Thank you!
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