Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: Calculating standard deviations used to approximate beta distributions
From
Emily McPherson <[email protected]>
To
"'[email protected]'" <[email protected]>
Subject
st: Calculating standard deviations used to approximate beta distributions
Date
Fri, 28 Feb 2014 11:49:34 -0800
Hello all, my name is Emily McPherson. I'm a health economist at the Canadian Centre for Applied Research in Cancer Control.
My question relates to calculating the standard deviation (SD) of transition probabilities derived from coefficients estimated through Weibull regression in Stata.
The transition probabilities are being used to model disease progression of leukemia patients over 40 cycles of 90 days (about 10 years). I need the SDs of the probabilities (which change over the run of the Markov model) to create beta distributions whose parameters can be approximated using the corresponding Markov cycle probability and its SD. These distributions are then used to do Probabilistic sensitivity analysis, i.e., they are substituted for the simple probabilities (one for each cycle) and random draws from them can evaluate the robustness of the model's cost-effectiveness results.
Anyway, using time to event survival data, I've used regression analysis to estimate coefficients that can be plugged into an equation to generate transition probabilities. For example...
. streg, nohr dist(weibull)
failure _d: event
analysis time _t: time
Fitting constant-only model:
Iteration 0: log likelihood = -171.82384
Iteration 1: log likelihood = -158.78902
Iteration 2: log likelihood = -158.64499
Iteration 3: log likelihood = -158.64497
Iteration 4: log likelihood = -158.64497
Fitting full model:
Iteration 0: log likelihood = -158.64497
Weibull regression -- log relative-hazard form
No. of subjects = 93 Number of obs = 93
No. of failures = 62
Time at risk = 60250
LR chi2(0) = -0.00
Log likelihood = -158.64497 Prob > chi2 = .
------------------------------------------------------------------------------
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | -4.307123 .4483219 -9.61 0.000 -5.185818 -3.428429
-------------+----------------------------------------------------------------
/ln_p | -.4638212 .1020754 -4.54 0.000 -.6638854 -.263757
-------------+----------------------------------------------------------------
p | .628876 .0641928 .5148471 .7681602
1/p | 1.590139 .1623141 1.301812 1.942324
We then create the probabilities with an equation () that uses p and _cons as well as t for time (i.e., Markov cycle number) and u for cycle length (usually a year, mine is 90 days since I'm working with leukemia patients who are very likely to have an event, i.e., relapse or die).
So where lambda = p, gamma = (exp(_cons))
gen result = (exp((lambda*((t-u)^ (gamma)))-(lambda*(t^(gamma)))))
gen transitions = 1-result
Turning to the variability, I first calculate the standard errors for the coefficients
. nlcom (exp(_b[_cons])) (exp(_b[/ln_p]))
_nl_1: exp(_b[_cons])
_nl_2: exp(_b[/ln_p])
------------------------------------------------------------------------------
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_nl_1 | .0116539 .0044932 2.59 0.009 .0028474 .0204604
_nl_2 | .6153864 .054186 11.36 0.000 .5091838 .721589
But what I'm really after is the standard errors on the transitions values, e.g.,
nlcom (_b[transitions])
But this doesn't work. Any feedback on how to get closer to this idea would be much appreciated. Thanks in advance!
Emily
Emily McPherson
Health Economist, Canadian Centre for Applied Research in Cancer Control (ARCC)
Cancer Control Research, BC Cancer Agency
"Advancing health economics, services, policy and ethics"
2nd floor, BC Cancer Research Centre
675 West 10th Avenue, Vancouver BC V5Z 1L3 CANADA
TEL 604 675 8000 ext 7066 FAX 604 675 8180
www.cc-arcc.ca
ARCC is funded by the Canadian Cancer Society
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/