Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

st: First-stage F from -xtivreg- versus AP F


From   David Torres <[email protected]>
To   "[email protected]" <[email protected]>
Subject   st: First-stage F from -xtivreg- versus AP F
Date   Tue, 21 Jan 2014 09:28:56 -0500

Statalisters,

I'm using -xtivreg- to estimate a 2SLS random effects model in Stata 13.0.  I'm needing help getting the first stage F statistic in addition to the Angrist-Pischke F I can get from the postestimation command -xtoverid- (more on this below).

. which xtivreg
/Applications/Stata/ado/base/x/xtivreg.ado
*! version 1.6.2  14apr2011

. which xtoverid   
/Users/diego/Library/Application Support/Stata/ado/plus/x/xtoverid.ado
*! xtoverid version 2.1.6   2Nov2011
*! Authors Mark Schaffer and Steve Stillman
*! Derived from overidxt and overid


Here is the most basic conditional model in which I am regressing vertically scaled reading scores on year and year-squared.  The endogenous regressor, diffsch, denotes whether a student attended an out-of-zone magnet school. It is instrumented with the log difference in distance between the zoned school and the nearest magnet school and the log distance to the enrolled school:

. xtivreg srsc year yearsq (diffsch=diffdist dist_enrld), re first


First-stage G2SLS regression
                                                 Number of obs    =      27830
                                                 Wald chi(4)      =       7182
                                                 Prob> chi2      =     0.0000
------------------------------------------------------------------------------
     diffsch |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        year |   .0010897   .0023365     0.47   0.641    -.0034898    .0056692
      yearsq |   .0009441   .0005764     1.64   0.101    -.0001858    .0020739
    diffdist |    .004433    .001686     2.63   0.009     .0011284    .0077376
  dist_enrld |    .162999   .0019443    83.84   0.000     .1591883    .1668097
       _cons |   .1364031   .0035329    38.61   0.000     .1294787    .1433274
------------------------------------------------------------------------------

G2SLS random-effects IV regression              Number of obs      =     27830
Group variable: short_id                        Number of groups   =      6168

R-sq:  within  = 0.8770                         Obs per group: min =         3
       between = 0.2215                                        avg =       4.5
       overall = 0.6533                                        max =         5

                                                Wald chi2(3)       = 154192.94
corr(u_i, X)       = 0 (assumed)                Prob> chi2        =    0.0000

------------------------------------------------------------------------------
        srsc |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
     diffsch |   9.999284   1.941415     5.15   0.000      6.19418    13.80439
        year |   74.19692   .3811099   194.69   0.000     73.44996    74.94389
      yearsq |  -7.926549   .0940278   -84.30   0.000     -8.11084   -7.742258
       _cons |   475.1334   .6555358   724.80   0.000     473.8486    476.4182
-------------+----------------------------------------------------------------
     sigma_u |  37.264026
     sigma_e |  25.567877
         rho |  .67991546   (fraction of variance due to u_i)
------------------------------------------------------------------------------
Instrumented:   diffsch
Instruments:    year yearsq diffdist dist_enrld
------------------------------------------------------------------------------


Now I would like to get the first stage F-statistic, but the first option above does not appear to give it.  If I use the postestimation command -xtoverid- with the noisily option, as shown below, I do get the Angrist-Pischke F, but in my write-up I'd like to show the regular F-stat to test joint significance of the instruments.

.  xtoverid, nois

First-stage regressions
-----------------------

First-stage regression of __00000I:

OLS estimation
--------------

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

                                                      Number of obs =    27830
                                                      F(  5, 27825) =  2097.56
                                                      Prob> F      =   0.0000
Total (centered) SS     =  875.5555503                Centered R2   =   0.2037
Total (uncentered) SS   =  960.0415225                Uncentered R2 =   0.2737
Residual SS             =  697.2383726                Root MSE      =    .1583

------------------------------------------------------------------------------
    __00000I |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    __00000R |   .0010897   .0023365     0.47   0.641      -.00349    .0056694
    __00000U |   .0009441   .0005764     1.64   0.101    -.0001858    .0020739
    __00000E |   .1364031   .0035329    38.61   0.000     .1294784    .1433277
    __00000L |    .004433    .001686     2.63   0.009     .0011283    .0077377
    __00000O |    .162999   .0019443    83.84   0.000     .1591881    .1668098
------------------------------------------------------------------------------
Included instruments: __00000R __00000U __00000E __00000L __00000O
------------------------------------------------------------------------------
F test of excluded instruments:
  F(  2, 27825) =  3528.57
  Prob> F      =   0.0000
Angrist-Pischke multivariate F test of excluded instruments:
  F(  2, 27825) =  3528.57
  Prob> F      =   0.0000



Summary results for first-stage regressions
-------------------------------------------

                                           (Underid)            (Weak id)
Variable     | F(  2, 27825)  P-val | AP Chi-sq(  2) P-val | AP F(  2, 27825)
__00000I     |    3528.57    0.0000 |     7058.41   0.0000 |     3528.57

Stock-Yogo weak ID test critical values for single endogenous regressor:
                                   10% maximal IV size             19.93
                                   15% maximal IV size             11.59
                                   20% maximal IV size              8.75
                                   25% maximal IV size              7.25
Source: Stock-Yogo (2005).  Reproduced by permission.

Underidentification test
Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)
Ha: matrix has rank=K1 (identified)
Anderson canon. corr. LM statistic       Chi-sq(2)=5630.40  P-val=0.0000

Weak identification test
Ho: equation is weakly identified
Cragg-Donald Wald F statistic                                    3528.57

Stock-Yogo weak ID test critical values for K1=1 and L1=2:
                                   10% maximal IV size             19.93
                                   15% maximal IV size             11.59
                                   20% maximal IV size              8.75
                                   25% maximal IV size              7.25
Source: Stock-Yogo (2005).  Reproduced by permission.

Weak-instrument-robust inference
Tests of joint significance of endogenous regressors B1 in main equation
Ho: B1=0 and orthogonality conditions are valid
Anderson-Rubin Wald test           F(2,27825)=    13.53     P-val=0.0000
Anderson-Rubin Wald test           Chi-sq(2)=     27.06     P-val=0.0000
Stock-Wright LM S statistic        Chi-sq(2)=     27.03     P-val=0.0000

Number of observations               N  =      27830
Number of regressors                 K  =          4
Number of endogenous regressors      K1 =          1
Number of instruments                L  =          5
Number of excluded instruments       L1 =          2

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

                                                      Number of obs =    27830
                                                      F(  4, 27826) =  3.6e+05
                                                      Prob> F      =   0.0000
Total (centered) SS     =  122387579.2                Centered R2   =   0.8485
Total (uncentered) SS   =  976762125.4                Uncentered R2 =   0.9810
Residual SS             =  18546537.84                Root MSE      =    25.82

------------------------------------------------------------------------------
    __00000G |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    __00000I |   9.999284   1.941276     5.15   0.000     6.194454    13.80412
    __00000R |   74.19692   .3810826   194.70   0.000     73.45002    74.94383
    __00000U |  -7.926549    .094021   -84.31   0.000    -8.110827   -7.742271
    __00000E |   475.1334   .6554887   724.85   0.000     473.8487    476.4181
------------------------------------------------------------------------------
Underidentification test (Anderson canon. corr. LM statistic):        5630.398
                                                   Chi-sq(2) P-val =    0.0000
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):             3528.573
Stock-Yogo weak ID test critical values: 10% maximal IV size             19.93
                                         15% maximal IV size             11.59
                                         20% maximal IV size              8.75
                                         25% maximal IV size              7.25
Source: Stock-Yogo (2005).  Reproduced by permission.
------------------------------------------------------------------------------
Sargan statistic (overidentification test of all instruments):           0.577
                                                   Chi-sq(1) P-val =    0.4474
------------------------------------------------------------------------------
Instrumented:         __00000I
Included instruments: __00000R __00000U __00000E
Excluded instruments: __00000L __00000O
------------------------------------------------------------------------------

Test of overidentifying restrictions: 
Cross-section time-series model: xtivreg g2sls   
Sargan-Hansen statistic   0.577  Chi-sq(1)    P-value = 0.4474


Can anyone tell me how to get what I want, the regular first stage F-stat, from all this?  I'd very much appreciate your help.

Thanks for your consideration, folks,
Diego Torres 		 	   		  
*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/faqs/resources/statalist-faq/
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index