Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: Fwd: psmatch2 kernel matching
From
Christina Wei <[email protected]>
To
[email protected]
Subject
st: Fwd: psmatch2 kernel matching
Date
Thu, 31 Oct 2013 18:21:20 -0400
Hi all, I have a question about kernel matching/propensity match analysis.
I have a database with ~ 400 pts, there are 2 groups of patients
(treated and untreated), whom I am trying to match them by key
covariates. I decided to go with kernel matching because it gave me
the greatest amount of metabias reduction, compared to other matching
algorithms.
The command I used was:
. psmatch2 treat_status age_1 female income_1 smoker_1 bmi_1 waist_1
edu_1 if cohort==0 & dmstatus _11==0, kernel k(epan) com logit
Logistic regression Number of obs = 379
LR chi2(7) = 20.50
Prob > chi2 = 0.0046
Log likelihood = -231.45013 Pseudo R2 = 0.0424
------------------------------------------------------------------------------
treat_status | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
age_1 | .0407305 .0108218 3.76 0.000 .0195202 .0619408
female | -.2388684 .31013 -0.77 0.441 -.8467301 .3689933
income_1 | -.1101363 .0899938 -1.22 0.221 -.286521 .0662483
smoker_1 | -.0553164 .2924599 -0.19 0.850 -.6285272 .5178944
bmi_1 | .0393986 .0238286 1.65 0.098 -.0073045 .0861017
waist_1 | -.0023815 .0100084 -0.24 0.812 -.0219976 .0172346
edu_1 | .0305265 .0567433 0.54 0.591 -.0806883 .1417412
_cons | -2.340632 1.441815 -1.62 0.105 -5.166537 .4852736
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Then I checked covariate balance using pstest to make sure that each
covariate are evenly balanced between the groups.
Then I used the _weight generated from the psmatch2 command to help
match up my patients in the following cox regression:
. stset DM_yr_conversion if cohort==0 & dmstatus_11==0 [pw=_weight],
failure(DM_censor) id(unqid_c
ohort)
id: unqid_cohort
failure event: DM_censor != 0 & DM_censor < .
obs. time interval: (DM_yr_conversion[_n-1], DM_yr_conversion]
exit on or before: failure
weight: [pweight=_weight]
if exp: cohort==0 & dmstatus_11==0
------------------------------------------------------------------------------
1156 total obs.
758 ignored at outset because of -if <exp>-
5 event time missing (DM_yr_conversion>=.) PROBABLE ERROR
29 weights invalid PROBABLE ERROR
------------------------------------------------------------------------------
364 obs. remaining, representing
364 subjects
54 failures in single failure-per-subject data
2131.652 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 9.745206
.
end of do-file
. do "C:\Users\CHRIST~1\AppData\Local\Temp\STD0h000000.tmp"
. stcox i.treat_status hba1c_1 glucose_1 if _support==1 & cohort==0
failure _d: DM_censor
analysis time _t: DM_yr_conversion
id: unqid_cohort
weight: [pweight=_weight]
(sum of wgt is 4.7067e+02)
Iteration 0: log pseudolikelihood = -288.35
Iteration 1: log pseudolikelihood = -266.04
Iteration 2: log pseudolikelihood = -265.86
Iteration 3: log pseudolikelihood = -265.86
Refining estimates:
Iteration 0: log pseudolikelihood = -265.86194
Cox regression -- Breslow method for ties
No. of subjects = 470.66 Number of obs = 360
No. of failures = 60.15
Time at risk = 2727.483
Wald chi2(3) = 47.38
Log pseudolikelihood = -265.86194 Prob > chi2 = 0.0000
(Std. Err. adjusted for 360 clusters in unqid_cohort)
------------------------------------------------------------------------------
| Robust
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.treat_status | 1.315519 .527333 0.68 0.494 .5996365 2.886063
hba1c_1 | 5.451966 1.915138 4.83 0.000 2.738719 10.85322
glucose_1 | 1.03018 .0161385 1.90 0.058 .9990303 1.062302
------------------------------------------------------------------------------
I hope this is adequate to perform the intended analysis. I am new to
STATA and propensity match analysis and your assistance is greatly
appreciated.
Sincerely,
Christina
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/