Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: st: sem multiple correlations and factor weights
From
[email protected] (Kristin MacDonald, StataCorp LP)
To
[email protected]
Subject
Re: st: sem multiple correlations and factor weights
Date
Thu, 26 Sep 2013 15:00:48 -0500
Dave Garson <[email protected]> asked about obtaining multiple correlations and
factor loadings with -sem-:
> For SEM, both SAS and SPSS print out a table of multiple correlations and a
> table of factor weights of indicator variable loadings on latent variables.
> I could not find these in Stata's sem, nor in the reference guide (though
> the guide calls indicator paths "loadings" but that is a different meaning
> from SAS or SPSS). Tips on getting this output in sem would be appreciated.
The multiple correlations and squared multiple correlations can be
obtained by typing -estat eqgof- after -sem-. For example, type
. webuse sem_2fmm, clear
. sem (Affective -> a1 a2 a3 a4 a5) (Cognitive -> c1 c2 c3 c4 c5)
. estat eqgof
The full output is given below my signature.
With regards to factor loadings, in my experience, the coefficients on the
paths from the latent variables to the observed indicators are equivalent to
the factor loadings reported by SAS Proc Calis and by Amos when the same
estimation method is used and the same set of identifying constraints are
imposed. If Dave is making comparisons to standardized results reported by
other packages, he will need to specify the -standardized- option with -sem-
or replay the results by typing
. sem, standardized
If Dave is comparing the unstandardized factor loadings, he will need to make
sure that the same constraints are used to set the scale of the latent
variable. By default, -sem- constrains the coefficient on the path to the
first observed variable to 1. Another common way to set the scale of the
latent variable is to constrain the variance of the latent variable to 1. If
the other packages are setting constraints in this way, Dave can use the
-variance()- option to set the same constraints with -sem-. For the model
above, we could type
. sem (Affective -> a1 a2 a3 a4 a5) (Cognitive -> c1 c2 c3 c4 c5), ///
variance(Affective@1 Cognitive@1)
--Kristin
[email protected]
. webuse sem_2fmm, clear
(Affective and cognitive arousal)
.
. sem (Affective -> a1 a2 a3 a4 a5) (Cognitive -> c1 c2 c3 c4 c5)
Endogenous variables
Measurement: a1 a2 a3 a4 a5 c1 c2 c3 c4 c5
Exogenous variables
Latent: Affective Cognitive
Fitting target model:
Iteration 0: log likelihood = -9542.8803
Iteration 1: log likelihood = -9539.5505
Iteration 2: log likelihood = -9539.3856
Iteration 3: log likelihood = -9539.3851
Structural equation model Number of obs = 216
Estimation method = ml
Log likelihood = -9539.3851
( 1) [a1]Affective = 1
( 2) [c1]Cognitive = 1
------------------------------------------------------------------------------
| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Measurement |
a1 <- |
Affective | 1 (constrained)
-----------+----------------------------------------------------------------
a2 <- |
Affective | .9758098 .0460752 21.18 0.000 .885504 1.066116
-----------+----------------------------------------------------------------
a3 <- |
Affective | .8372599 .0355086 23.58 0.000 .7676643 .9068556
-----------+----------------------------------------------------------------
a4 <- |
Affective | .9640461 .0499203 19.31 0.000 .866204 1.061888
-----------+----------------------------------------------------------------
a5 <- |
Affective | 1.063701 .0435751 24.41 0.000 .9782951 1.149107
-----------+----------------------------------------------------------------
c1 <- |
Cognitive | 1 (constrained)
-----------+----------------------------------------------------------------
c2 <- |
Cognitive | 1.114702 .0655687 17.00 0.000 .9861901 1.243215
-----------+----------------------------------------------------------------
c3 <- |
Cognitive | 1.329882 .0791968 16.79 0.000 1.174659 1.485105
-----------+----------------------------------------------------------------
c4 <- |
Cognitive | 1.172792 .0711692 16.48 0.000 1.033303 1.312281
-----------+----------------------------------------------------------------
c5 <- |
Cognitive | 1.126356 .0644475 17.48 0.000 1.000041 1.252671
-------------+----------------------------------------------------------------
var(e.a1)| 384.1359 43.79119 307.2194 480.3095
var(e.a2)| 357.3524 41.00499 285.3805 447.4755
var(e.a3)| 154.9507 20.09026 120.1795 199.7822
var(e.a4)| 496.4594 54.16323 400.8838 614.8214
var(e.a5)| 191.6857 28.07212 143.8574 255.4154
var(e.c1)| 171.6638 19.82327 136.894 215.2649
var(e.c2)| 171.8055 20.53479 135.9247 217.1579
var(e.c3)| 276.0144 32.33535 219.3879 347.2569
var(e.c4)| 224.1994 25.93412 178.7197 281.2527
var(e.c5)| 146.8655 18.5756 114.6198 188.1829
var(Affect~e)| 1644.463 193.1032 1306.383 2070.034
var(Cognit~e)| 455.9349 59.11245 353.6255 587.8439
-------------+----------------------------------------------------------------
cov(Affec~e,|
Cognitive)| 702.0736 85.72272 8.19 0.000 534.0601 870.087
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(34) = 88.88, Prob > chi2 = 0.0000
.
. estat eqgof
Equation-level goodness of fit
------------------------------------------------------------------------------
| Variance |
depvars | fitted predicted residual | R-squared mc mc2
-------------+---------------------------------+------------------------------
observed | |
a1 | 2028.598 1644.463 384.1359 | .8106398 .9003553 .8106398
a2 | 1923.217 1565.865 357.3524 | .8141903 .9023249 .8141903
a3 | 1307.726 1152.775 154.9507 | .8815113 .9388883 .8815113
a4 | 2024.798 1528.339 496.4594 | .7548104 .8687982 .7548104
a5 | 2052.328 1860.643 191.6857 | .9066009 .9521559 .9066009
c1 | 627.5987 455.9349 171.6638 | .7264752 .8523351 .7264752
c2 | 738.3325 566.527 171.8055 | .7673061 .8759601 .7673061
c3 | 1082.374 806.3598 276.0144 | .7449917 .863129 .7449917
c4 | 851.311 627.1116 224.1994 | .7366422 .8582786 .7366422
c5 | 725.3002 578.4346 146.8655 | .7975107 .8930346 .7975107
-------------+---------------------------------+------------------------------
overall | | .9949997
------------------------------------------------------------------------------
mc = correlation between depvar and its prediction
mc2 = mc^2 is the Bentler-Raykov squared multiple correlation coefficient
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/