Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: Replicating Poi's quaids command
From
"Cruz Angel Echevarria" <[email protected]>
To
"STATAlist" <[email protected]>
Subject
st: Replicating Poi's quaids command
Date
Wed, 4 Sep 2013 15:26:52 +0200
To Whom It May Concern,
I would really appreciate some help on this. Running the following commands
to estimate a QUAIDS model
use food.dta, clear;
des;
quaids w1-w4, anot(10) prices(p1-p4) expenditure(expfd) nolog; estat
expenditure e*; summarize e_1-e_4;
I obtain the following output for expenditure elasticities
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
e_1 | 4039 .1742147 1.21937 -60.39818 .7226771
e_2 | 4029 .7332107 .2953817 -8.625433 .9495344
e_3 | 3996 2.008486 1.26706 1.133542 36.11684
e_4 | 4047 2.292034 2.938157 1.211376 169.9647
However, running my own code to estimate QUAIDS model, I obtain the same
parameter estimates that Boid's procedure does. I interpret this as that the
nlsurquaids program I have written is OK. However, when I try to compute the
expenditure elasticities, I obtain different results. This makes me think
that I am not translating the theoretical formulae properly into Stata code.
My code follows:
cscript
#delimit;
set more off;
version 13;
drop _all;
clear matrix;
capture log close;
log using output.log, replace;
set memory 500m, permanently;
use food.dta, clear;
rename lnexp lnm;
des;
scalar a_0 = 10;
nlsur quaids @ w1 w2 w3 lnp1 lnp2 lnp3 lnp4 lnm,
ifgnls neq(3)
param(a1 a2 a3 b1 b2 b3 g11 g12 g13 g22 g23 g33 l1 l2 l3)
title( Example QUAIDS)
title2( 4 goods)
nolog;
matrix B = e(b)';
matrix list B;
/* a4 */
nlcom a4: 1 - (_b[/a1] + _b[/a2] + _b[/a3]);
/* b4 */
nlcom b4: 0 - (_b[/b1] + _b[/b2] + _b[/b3]);
/* l4 */
nlcom l4: 0 - (_b[/l1] + _b[/l2] + _b[/l3]);
/* g14 */
nlcom g14: 0 - (_b[/g11] + _b[/g12] + _b[/g13]);
/* g21 */
nlcom g21: _b[/g12];
/* g24 */
nlcom g24: 0 - (_b[/g12] + _b[/g22] + _b[/g23]);
/* g31 */
nlcom g31: _b[/g13];
/* g32 */
nlcom g32: _b[/g23];
/* g34 */
nlcom g34: 0 - (_b[/g13] + _b[/g23] + _b[/g33]);
/* g41 */
nlcom g41: 0 - (_b[/g11] + _b[/g12] + _b[/g13]);
/* g42 */
nlcom g42: 0 - (_b[/g12] + _b[/g22] + _b[/g23]);
/* g43 */
nlcom g43: 0 - (_b[/g13] + _b[/g23] + _b[/g33]);
/* g44 */
nlcom g44: 0 - (0 - (_b[/g11] + _b[/g12] + _b[/g13]))
- (0 - (_b[/g12] + _b[/g22] + _b[/g23]))
- (0 - (_b[/g13] + _b[/g23] + _b[/g33]));
/* Scalars for parameter estimates */
scalar a1 = _b[/a1];
scalar a2 = _b[/a2];
scalar a3 = _b[/a3];
scalar a4 = 1 - a1 - a2 - a3;
scalar b1 = _b[/b1];
scalar b2 = _b[/b2];
scalar b3 = _b[/b3];
scalar b4 = 1 - b1 - b2 - b3;
scalar g11 = _b[/g11];
scalar g12 = _b[/g12];
scalar g13 = _b[/g13];
scalar g14 = 0 - (g11 + g12 + g13);
scalar g21 = g12;
scalar g22 = _b[/g22];
scalar g23 = _b[/g23];
scalar g24 = 0 - (g12 + g22 + g23);
scalar g31 = g13;
scalar g32 = g23;
scalar g33 = _b[/g33];
scalar g34 = 0 - (g13 + g23 + g33);
scalar g41 = g14;
scalar g42 = g24;
scalar g43 = g34;
scalar g44 = 0 - (g14 + g24 + g34);
scalar l1 = _b[/l1];
scalar l2 = _b[/l2];
scalar l3 = _b[/l3];
scalar l4 = 0 - (l1 + l2 + l3);
display a1;
display a2;
display a3;
display a4;
display b1;
display b2;
display b3;
display b4;
display l1;
display l2;
display l3;
display l4;
display g11;
display g12;
display g13;
display g14;
display g21;
display g22;
display g23;
display g24;
display g31;
display g32;
display g33;
display g34;
display g41;
display g42;
display g43;
display g44;
/* This produces the same estimates tan those obtained by running the
aforementioned quaids command */
/* ===== */
/* FOR ELASTICITIES */
/* ===== */
/* Preliminaries */
gen lnb = b1*lnp1 + b2*lnp2 + b3*lnp3 + b4*lnp4;
gen bindex = exp(lnb);
gen lna = a_0 + a1*lnp1 + a2*lnp2 + a3*lnp3 + a4*lnp4 +
(1/2)*(
g11*lnp1*lnp1 + g12*lnp1*lnp2 + g13*lnp1*lnp3 + g14*lnp1*lnp4 +
g21*lnp2*lnp1 + g22*lnp2*lnp2 + g23*lnp2*lnp3 + g24*lnp2*lnp4 +
g31*lnp3*lnp1 + g32*lnp3*lnp2 + g33*lnp3*lnp3 + g34*lnp3*lnp4 +
g41*lnp4*lnp1 + g42*lnp4*lnp2 + g43*lnp4*lnp3 + g44*lnp4*lnp4
);
gen aindex = exp(lna);
/* INCOME ELASTICITIES */
gen mu1 = b1 + ((l1*2)/bindex)*(lnm - lna); gen mu2 = b2 +
((l2*2)/bindex)*(lnm - lna); gen mu3 = b3 + ((l3*2)/bindex)*(lnm - lna); gen
mu4 = b4 + ((l4*2)/bindex)*(lnm - lna); gen em1 = (mu1/w1) + 1;
gen em2 = (mu2/w2) + 1;
gen em3 = (mu3/w3) + 1;
gen em4 = (mu4/w4) + 1;
sum em*;
And this is the output that I obtain
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
em1 | 4039 1.556595 1.060537 -1.413979 37.93764
em2 | 4029 .9256395 .1425985 -2.658406 2.997787
em3 | 3996 .4810829 1.376963 -46.75089 4.259475
em4 | 4047 5.482535 8.378185 -.6769157 437.3061
which clearly differs from the one above shown.
I would really appreciate any help on this.
Regards,
Cruz
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/