Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: st: Incomplete results of linear regression with interaction variable
From
John Antonakis <[email protected]>
To
[email protected]
Subject
Re: st: Incomplete results of linear regression with interaction variable
Date
Thu, 21 Mar 2013 08:21:15 +0100
Hi.
You dont have enough Dfs. See how DFs are calculated for an F-test.
You have k=3 parameters in the numerator and n-k-1 (0) in the denominator.
Did you really mean to estimate a model with n= 4?
Best
J.
__________________________________________
John Antonakis
Professor of Organizational Behavior
Director, Ph.D. Program in Management
Faculty of Business and Economics
University of Lausanne
Internef #618
CH-1015 Lausanne-Dorigny
Switzerland
Tel ++41 (0)21 692-3438
Fax ++41 (0)21 692-3305
http://www.hec.unil.ch/people/jantonakis
Associate Editor
The Leadership Quarterly
__________________________________________
On 20.03.2013 22:56, Jean-Baptiste Peraldi wrote:
> Hi Statalisters,
>
> I want to to run two linear regressions with dichotomous independant
variables, where one contains an interaction variable.
> It appears that the regression with the interaction variable gives
only results for the coefficients.
>
> Here is the content of my database:
> ***
> . list
>
+---------------------------------------------------------------------------+
> | race quality mean_call sd_call n r_q |
>
|----------------------------------------------------------------------------|
> 1. | 0 0 .0854185 .279624
1159 0 |
> 2. | 0 1 .1069024 .3091192
1188 0 |
> 3. | 1 0 .0569456 .2318388 1159 0 |
> 4. | 1 1 .0675791 .2511297 1169 1 |
>
+---------------------------------------------------------------------------+
> ***
>
>
> The first regression is :
> " mean_call = cst + beta1*race "
> where "race" is a dichotomous (0 or 1) variable.
>
> The second regression contains an interaction variable :
> " mean_call = cst + beta1*race + beta2*quality + beta3*race*quality "
where both "race" and "quality" are dichotomous (0 or 1) variables.
>
> When running the first regression, I get full results:
> ***
> . reg mean_call race
>
> Source | SS df MS Number of
obs = 4
> -------------+----------------------------------------- F( 1, 2)
= 8.00
> Model | .001149076 1 .001149076 Prob > F
= 0.1056
> Residual | .000287314 2 .000143657 R-squared = 0.8000
> -------------+----------------------------------------- Adj R-squared
= 0.7000
> Total | .00143639 3 .000478797 Root
MSE = .01199
>
>
------------------------------------------------------------------------------
> mean_call | Coef. Std. Err. t P>|t| [95% Conf.
Interval]
>
-------------+----------------------------------------------------------------
> race | -.033898 .0119857 -2.83 0.106 -.0854683
.0176723
> _cons | .0961604 .0084752 11.35 0.008 .0596947
.1326261
>
------------------------------------------------------------------------------
> ***
>
> For the second regression, I create the interaction variable and run
the regression
> ***
> . gen r_q = race*quality
> . reg mean_call race quality r_q
>
> Source | SS df MS Number of obs
= 4
> -------------+---------------------------------------- F(
3, 0) = .
> Model | .00143639 3 .000478797 Prob > F
= .
> Residual | 0 0 .
R-squared = 1.0000
> -------------+---------------------------------------- Adj
R-squared = .
> Total | .00143639 3 .000478797 Root MSE
= 0
>
>
------------------------------------------------------------------------------
> mean_call | Coef. Std. Err. t P>|t| [95% Conf.
Interval]
>
-------------+----------------------------------------------------------------
> race | -.0284728 . . . . .
> quality | .0214839 . . . . .
> r_q | -.0108504 . . . . .
> _cons | .0854185 . . . . .
>
------------------------------------------------------------------------------
> ***
> Here we can see that we get results for the coefficients only, which
is quite weird. I will be glad if you can help me solve this problem.
> Thanks for your consideration.
>
> Jean-Baptiste P.
>
> ***
> Stata/IC 12.1 for Mac (64-bit Intel)
> Revision 25 Feb 2013
> ***
>
>
>
>
>
> *
> * For searches and help try:
> * http://www.stata.com/help.cgi?search
> * http://www.stata.com/support/faqs/resources/statalist-faq/
> * http://www.ats.ucla.edu/stat/stata/
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/