Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Ebru Ozturk <ebru_0512@hotmail.com> |
To | <statalist@hsphsun2.harvard.edu> |
Subject | RE: st: Obtaining marginal effects and their standard errors after estimations with interactions |
Date | Fri, 4 Jan 2013 18:31:13 +0200 |
Thank you, I use Stata 10 therefore I asked this question. I just wonder when we have more independent or control variables how do we adjust the given equations on this link: http://www.stata.com/support/faqs/statistics/marginal-effects-after-interactions/ Kind regards Ebru ---------------------------------------- > Date: Fri, 4 Jan 2013 09:32:25 -0500 > To: statalist@hsphsun2.harvard.edu; statalist@hsphsun2.harvard.edu > From: richardwilliams.ndu@gmail.com > Subject: Re: st: Obtaining marginal effects and their standard errors after estimations with interactions > > At 03:17 PM 1/3/2013, Ebru Ozturk wrote: > > >Dear All, > > > >On Stata FAQs' page, there are some given examples for Probit > >estimation with interaction effects for Stata 10 titled as "I am > >using a model with interactions. How can I obtain marginal effects > >and their standard errors?" and the link is: > >http://www.stata.com/support/faqs/statistics/marginal-effects-after-interactions/ > > > >Do you think this way is still applicable to Probit estimation? and > >Is the below command correct when we have other independent or > >control variables? > > I don't know if you did it right or not, but if you have Stata 11 or > higher why not use -margins-, e.g. > > sysuse auto, clear > probit foreign weight length c.weight#c.length, nolog > margins, dydx(*) > > >local xb _b[weight]*`meanwei' + _b[len]*`meanlen' + > >_b[wl]*`meanwei'*`meanlen' + _b[C1]*C1+_b[C2]*C2 + _b[_cons] // if > >more variables // > > > >/////// example ///////// > > > >sysuse auto, clear > >generate wl=weight*length > >probit foreign weight length wl, nolog > >quietly summarize weight if e(sample) > >local meanwei = r(mean) > >quietly summarize length if e(sample) > >local meanlen = r(mean) > > > >local xb _b[weight]*`meanwei' + _b[len]*`meanlen' + > >_b[wl]*`meanwei'*`meanlen' + _b[_cons] > >predictnl dydw = normalden(`xb')*(_b[weight]+ _b[wl]*`meanlen') in 1, se(sew) > >list dydw sew in 1 > > > >predictnl dydl = normalden(`xb')*(_b[len]+ _b[wl]*`meanwei') in 1, se(sel) > >list dydl sel in 1 > > > >predictnl dydlw =normalden(`xb')*(-(`xb'))*(_b[weight]+ > >_b[wl]*`meanlen')*(_b[len]+ _b[wl]*`meanwei') + normalden(`xb')*( > >_b[wl]) in 1, se(selw) > >list dydlw selw in 1 > > > >Ebru > > ------------------------------------------- > Richard Williams, Notre Dame Dept of Sociology > OFFICE: (574)631-6668, (574)631-6463 > HOME: (574)289-5227 > EMAIL: Richard.A.Williams.5@ND.Edu > WWW: http://www.nd.edu/~rwilliam > > * > * For searches and help try: > * http://www.stata.com/help.cgi?search > * http://www.stata.com/support/faqs/resources/statalist-faq/ > * http://www.ats.ucla.edu/stat/stata/ * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/faqs/resources/statalist-faq/ * http://www.ats.ucla.edu/stat/stata/