Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: RE: Meta-Analysis using --metan-- how to ensure comparison to ES=1 not ES=0
From
"Trelle Sven" <[email protected]>
To
<[email protected]>
Subject
st: RE: Meta-Analysis using --metan-- how to ensure comparison to ES=1 not ES=0
Date
Mon, 15 Oct 2012 11:47:54 +0200
Hi Belinda,
You will need to log-transform your hazard ratios and confidence
interval (and use the eform option in metan):
foreach var of varlist pfshr pfsll pfsul {
gen ln_`var' = ln(`var')
}
metan ln_pfshr ln_pfsll ln_pfsul, eform effect("Hazard Ratio") fixed
lcols(study author year treatment) double by(drug) astext(50)
xlabel(0.2, 0.5, 1, 2, 5) textsize(100) title("RR of PFS") null(1)
force
Best
Sven
p.s. the null-option only refers to the graph (at least to my knowledge)
-----Original Message-----
From: [email protected]
[mailto:[email protected]] On Behalf Of Belinda
Butcher
Sent: Montag, 15. Oktober 2012 05:14
To: [email protected]
Subject: st: Meta-Analysis using --metan-- how to ensure comparison to
ES=1 not ES=0
Hi,
I use Stata/MP for Mac 11.2, dated 16 May 2012. All files are up to
date..
I am using the --metan-- command (available from SSC:
http://ideas.repec.org/c/boc/bocode/s456798.html) to combine the results
of some oncology studies.
I am combining the hazard ratios for progression free survival, using
the upper and lower confidence interals).
I am using the following command:
metan pfshr pfsll pfsul, effect("Hazard Ratio") fixed lcols(study author
year treatment) double by(drug) astext(50) xlabel(0.2, 0.5, 1, 2, 5)
textsize(100) title("RR of PFS") null(1) force
I need to compare the resultant overall HR to one, rather than zero. To
do this, I have included "null(1)" in my command. However, when I run
the command, I get a comparison to ES=0 (see output below).
Study | ES [95% Conf. Interval] % Weight
---------------------+--------------------------------------------------
---------------------+-
A
1 | 0.680 0.590 0.780 12.38
2 | 0.758 0.661 0.869 10.33
Sub-total |
I-V pooled ES | 0.715 0.645 0.786 22.72
---------------------+--------------------------------------------------
---------------------+-
B
3 | 0.493 0.418 0.581 16.83
4 | 1.190 0.720 1.960 0.29
5 | 1.100 0.570 2.120 0.19
6 | 0.720 0.620 0.840 9.24
Sub-total |
I-V pooled ES | 0.584 0.519 0.649 26.54
---------------------+--------------------------------------------------
---------------------+-
C
7 | 0.540 0.420 0.710 5.32
8 | 0.680 0.570 0.800 8.45
9 | 0.540 0.440 0.660 9.24
10 | 0.692 0.617 0.776 17.68
| 0.590 0.480 0.720 7.76
Sub-total |
I-V pooled ES | 0.628 0.580 0.676 48.45
---------------------+--------------------------------------------------
---------------------+-
D
11 | 1.210 0.820 1.800 0.47
12 | 1.410 0.960 2.070 0.36
Sub-total |
I-V pooled ES | 1.298 0.930 1.665 0.83
---------------------+--------------------------------------------------
---------------------+-
E
13 | 0.690 0.490 1.140 1.06
14 | 1.010 0.610 1.660 0.41
Sub-total |
I-V pooled ES | 0.779 0.502 1.055 1.46
---------------------+--------------------------------------------------
---------------------+-
Overall |
I-V pooled ES | 0.644 0.610 0.677 100.00
---------------------+--------------------------------------------------
---------------------+-
Heterogeneity calculated by formula
Q = SIGMA_i{ (1/variance_i)*(effect_i - effect_pooled)^2 } where
variance_i = ((upper limit - lower limit)/(2*z))^2
Test(s) of heterogeneity:
Heterogeneity degrees of
statistic freedom P I-squared**
A 1.18 1 0.278 15.1%
B 16.03 3 0.001 81.3%
C 7.53 4 0.110 46.9%
D 0.28 1 0.596 0.0%
E 1.03 1 0.310 3.1%
Overall 46.85 14 0.000 70.1%
Overall Test for heterogeneity between sub-groups:
20.79 4 0.000
** I-squared: the variation in ES attributable to heterogeneity)
Considerable heterogeneity observed (up to 81.3%) in one or more
sub-groups, Test for heterogeneity between sub-groups likely to be
invalid
Significance test(s) of ES=0
A z= 19.99 p = 0.000
B z= 17.64 p = 0.000
C z= 25.62 p = 0.000
D z= 6.92 p = 0.000
E z= 5.52 p = 0.000
Overall z= 37.75 p = 0.000
------------------------------------------------------------------------
-
I have looked in Sterne's book on Meta-Analysis (Sterne J.A.C (2009)
Meta-Analysis in Stata: An updated collection from the Stata Journal),
but haven't been able to work this out.
Your help is appreciated.
Kind regards,
Belinda Butcher BSc(Hons) MBiostat PhD
Director - Biostatistics & Medical Writing WriteSource Medical Pty Ltd
PO Box 1521
Lane Cove NSW 1595
M: 0418 286 014
E: [email protected]
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/