Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | San K <devank@gmail.com> |
To | statalist@hsphsun2.harvard.edu |
Subject | st: How to calculate confidence interval of the long-run elasticity |
Date | Fri, 3 Aug 2012 16:25:02 +1000 |
Hello, I would like to check if I’m doing right to calculate to confidence interval of the long-run elasticity estimates. Here are the results from xtabond2. ---------------------------------------------------------------------------------- | Corrected ConsDayAvgLN | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------+---------------------------------------------------------------- Lag4ConsDayAvgLN | .2124323 .0607073 3.50 0.000 .0934483 .3314164 waitedAvgPrice | .0000588 .0000306 1.92 0.055 -1.23e-06 .0001189 waitedAvgPriceL1 | .0007982 .0001699 4.70 0.000 .0004653 .0011311 waitedAvgPriceL2 | -.0005356 .0003933 -1.36 0.173 -.0013064 .0002352 waitedAvgPriceL3 | -.0003919 .00042 -0.93 0.351 -.001215 .0004313 waitedAvgPriceL4 | -.0013985 .0002538 -5.51 0.000 -.001896 -.000901 summer | -.1151637 .0858191 -1.34 0.180 -.283366 .0530386 autumn | -.1719444 .0863831 -1.99 0.047 -.3412522 -.0026366 winter | -.181052 .0877778 -2.06 0.039 -.3530934 -.0090106 spring | -.1314596 .0861975 -1.53 0.127 -.3004036 .0374844 ---------------------------------------------------------------------------------- This is what David (ddrukker@stata.com) suggests doing to calculate the standard error. http://www.stata.com/statalist/archive/2002-07/msg00028.html Based on the above I did the following: * calculate the long-run estimate mat price_LR = (_b[waitedAvgPrice]+_b[waitedAvgPriceL1]+_b[waitedAvgPriceL2]+_b[waitedAvgPriceL3]+_b[waitedAvgPriceL4])/(1-_b [Lag4ConsDayAvgLN]) * calculate Chi2 testnl 0 = (_b[waitedAvgPrice]+_b[waitedAvgPriceL1]+_b[waitedAvgPriceL2]+_b[waitedAvgPriceL3]+_b[waitedAvgPriceL4])/(1-_b[Lag 4ConsDayAvgLN]) (1) 0 = (_b[waitedAvgPrice]+_b[waitedAvgPriceL1]+_b[waitedAvgPriceL2]+_b[waitedAvgPriceL3]+_b[waitedAvgPriceL4])/(1-_b[Lag4ConsDayAvgLN]) chi2(1) = 31.19 Prob > chi2 = 0.0000 * calculate the standard error . mat stdError=price_LR/sqrt(r(chi2)) * Long-Run estimate at the price of $213 . mat price_LR_213=price_LR*213 Then finally using the Excel I calculated the 95% confidence level by multiplying the stdError by 1.96 and add (or subtract) to the price_LR_213. Is this the correct way of doing it? Why I’m concern is that I’m getting very tight confidence interval! Any help is appreciated. * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/