Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Scott Merryman <scott.merryman@gmail.com> |
To | statalist@hsphsun2.harvard.edu |
Subject | Re: st: SFE technical estimates STAT and SAS |
Date | Wed, 9 May 2012 15:41:01 -0500 |
Yes. Using the greene9 data set: . webuse greene9,clear . frontier lnv lnk lnl, nolog Stoc. frontier normal/half-normal model Number of obs = 25 Wald chi2(2) = 743.71 Log likelihood = 2.4695222 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ lnv | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnk | .2585478 .098764 2.62 0.009 .0649738 .4521218 lnl | .7802451 .1199399 6.51 0.000 .5451672 1.015323 _cons | 2.081135 .281641 7.39 0.000 1.529128 2.633141 -------------+---------------------------------------------------------------- /lnsig2v | -3.48401 .6195353 -5.62 0.000 -4.698277 -2.269743 /lnsig2u | -3.014599 1.11694 -2.70 0.007 -5.203761 -.8254368 -------------+---------------------------------------------------------------- sigma_v | .1751688 .0542616 .0954514 .3214633 sigma_u | .2215073 .1237052 .074134 .6618486 sigma2 | .0797496 .0426989 -.0039388 .163438 lambda | 1.264536 .1678684 .9355204 1.593552 ------------------------------------------------------------------------------ Likelihood-ratio test of sigma_u=0: chibar2(01) = 0.43 Prob>=chibar2 = 0.256 . predict te, te . cl state te state te 1. Alabama .8231754 2. California .8692654 3. Connecticut .8318406 4. Florida .6016339 5. Georgia .9040509 6. Illinois .8891712 7. Indiana .8150898 8. Iowa .785352 9. Kansas .9066431 10. Kentucky .9464481 11. Louisiana .8214222 12. Maine .8061242 13. Maryland .8772239 14. Massachusetts .8596337 15. Michigan .8582037 16. Missouri .9050045 17. NewJersey .9111356 18. NewYork .7636376 19. Ohio .8010177 20. Pennsylvania .8648741 21. Texas .8217006 22. Virginia .8732988 23. Washington .898432 24. WestVirginia .8602608 25. Wisconsin .8727364 From SAS: proc qlim data=greene covest=hessian; model lnv = lnk lnl; endogenous lnv ~ frontier (type=HALF production); output out = work_out1 TE1 ; run; proc print data = work_out1; var state te1; run; Parameter Estimates Standard Approx Parameter DF Estimate Error t Value Pr > |t| Intercept 1 2.081135 0.281648 7.39 <.0001 lnk 1 0.258548 0.098766 2.62 0.0089 lnl 1 0.780245 0.119945 6.51 <.0001 _Sigma_v 1 0.175169 0.054265 3.23 0.0012 _Sigma_u 1 0.221507 0.123706 1.79 0.0734 Obs state TE1 1 Alabama 0.82318 2 California 0.86927 3 Connecticut 0.83184 4 Florida 0.60163 5 Georgia 0.90405 6 Illinois 0.88917 7 Indiana 0.81509 8 Iowa 0.78535 9 Kansas 0.90664 10 Kentucky 0.94645 11 Louisiana 0.82142 12 Maine 0.80612 13 Maryland 0.87722 14 Massachusetts 0.85963 15 Michigan 0.85820 16 Missouri 0.90500 17 NewJersey 0.91114 18 NewYork 0.76364 19 Ohio 0.80102 20 Pennsylvania 0.86487 21 Texas 0.82170 22 Virginia 0.87330 23 Washington 0.89843 24 WestVirginia 0.86026 25 Wisconsin 0.87274 On Wed, May 9, 2012 at 2:53 PM, Price, Joseph <jprice@bus.olemiss.edu> wrote: > I am running a half-normal production frontier analysis with frontier. > frontier lnAAA lnBBB lnCCC lnDDD , distribution(hnormal) technique(nr) > predict ehte, te > predict ehu, u > predict ehm, m > > I am also running a half-normal production frontier analysis with proc QLIM. > I would like to be able to get the technical efficiencies to match up to STATA using > frontier. I have been unable to get the same results from both packages. > > qlim data=work_dataset1 METHOD=NEWRAP covest=hessian; > model lnAAA = lnBBB lnCCC lnDDD; > endogenous lnAAA ~ frontier (type=HALF production); > output out = work_out1 TE1 TE2 EXPECTED; > > The documentation for the technical efficicneies in SAS are > TE1 > outputs estimates of > technical efficiency for each producer in the stochastic frontier model > suggested by Battese and Coelli (1988). > TE2 > outputs estimates of > technical efficiency for each producer in the stochastic frontier model > suggested by Jondrow et al. (1982). > > STATA documents > produces estimates of the technical efficiency via TE = E(exp(-u|e)] > This has been documented as derrived from (by Battese and Coelli (1988) too? > and can also produce > produces estimates of minus the natural log of the technical efficiency via TE = exp(-E(u|e)] > produces estimates of minus the natural log of the technical efficiency via TE = exp(-M(u|e)] > > I would appreciate any help with this issue. Has anyone been able to get the same results from QLIM and frontier? > > * > * For searches and help try: > * http://www.stata.com/help.cgi?search > * http://www.stata.com/support/statalist/faq > * http://www.ats.ucla.edu/stat/stata/ * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/