Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: st: Regression based Shapley Value Decomposition rbdineq


From   Nick Cox <[email protected]>
To   [email protected]
Subject   Re: st: Regression based Shapley Value Decomposition rbdineq
Date   Mon, 26 Mar 2012 12:28:11 +0100

This is a program from

http://dasp.ecn.ulaval.ca/training_dakar/Stata_and_DASP/DASP_V2.1/dasp

Please note that you are asked to explain _where_ user-written
programs you refer to come from.

The author is given as Abdelkrim Araar  (aabd  AT ecn.ulaval.ca) and
he may not be a member of Statalist. If you do not get a detailed
explanation, I would contact him directly for support.

Nick

On Mon, Mar 26, 2012 at 12:12 PM, Ruchika <[email protected]> wrote:
> Dear Statalisters
>
> I am running a regression based decomposition by using command
> rbdineq. i have installed the DASP V2.1 in stata 10. when i use this
> command with 3, 4 independent variables then i get the results as
> given below but i actually need more independent variables then i
> donot get the results even after 3-4 hours. it just get one line
> repeatedly saying 6094missing values generated as i have mentioned
> below the these results. Can anyone have any idea why i am not getting
> results even after such a long time. how many maximum independent
> variables this command can process? Is there any other way of doing
> this regression based shapley value based decomposition?
>
>
> rbdineq sector sex_head hh_size, dep(real_mpce_mrp) model(semilog)
> hsize(per_wht) dregres(0)
>
>    Regression-based inequality decomposition by predicted income
> components(using the Shapley value).
>    Execution  time       :  86.86     second(s)
>    Inequality index      :  Gini index
>    Estimated inequality  :  0.350435
>    Household size        :  per_wht
>  +---------------------------------------------------------------------+
>  |          Sources   |      Income         Absolute        Relative   |
>  |                    |       Share       Contribution    Contribution |
>  |--------------------+------------------------------------------------|
>  |1: _p_cons        |               .        0.000000        0.000000|
>  |2: _p_sector      |               .        0.064459        0.183941|
>  |3: _p_sex_head |               .        0.000016        0.000046|
>  |4: _p_hh_size    |               .        0.041701        0.118997|
>  |5: _p_resi          |               .        0.244259        0.697016|
>  |--------------------+------------------------------------------------|
>  |              Total |               .        0.350435        1.000000|
>  +---------------------------------------------------------------------+
>
> Marginal contributions:
> ---------------------------------------------------------------------------
>        Source |    level_1     level_2     level_3     level_4     level_5
> ---------------+-----------------------------------------------------------
> 1: _p_cons        |   0.000000    0.000000    0.000000    0.000000    0.000000
> 2: _p_sector      |   0.020474    0.015706    0.011915    0.009101    0.007264
> 3: _p_sex_head |   0.000009    0.000004    0.000002    0.000001    0.000001
> 4: _p_hh_size    |   0.014967    0.010676    0.007363    0.005027    0.003667
> 5: _p_resi          |   0.059700    0.053299    0.047875    0.043428    0.039958
> ---------------------------------------------------------------------------
>
> rbdineq social_group nic3grp_hh eduheadcate ageheadcate religioncode
> state_club sector sex_head hh_size hhtype, dep(real_mpce_mrp)
> model(semilog) hsize(per_wht) dregres(0)
>
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> (6094 missing values generated)
> and so on...............
>
> Thanks & Regards
> Ruchika
> PhD Research Scholar
> *
> *   For searches and help try:
> *   http://www.stata.com/help.cgi?search
> *   http://www.stata.com/support/statalist/faq
> *   http://www.ats.ucla.edu/stat/stata/

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index