Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Kenji Chihaya <chihayakenji1893@gmail.com> |
To | statalist@hsphsun2.harvard.edu |
Subject | st: Stacked plots of cumulative incidence functions for multinominal covariates |
Date | Mon, 20 Feb 2012 05:39:36 +0900 |
Dear statalist I am trying to estimate a model of competing risks using stcrreg with the following commands in stata 12. The problem is that I can't get correct predictions for all the categories of my covariate for my stacked cumulative incidence plots. stset age_r, id(serial) failure(failure==1) origin(time 14) stcrreg i.race, compete(failure= 2 3) stset age_r, id(serial) failure(failure==2) origin(time 14) stcrreg i.race, compete(failure= 1 3) stset age_r, id(serial) failure(failure==3) origin(time 14) stcrreg i.race, compete(failure= 1 2) Then I want to make a stacked cumulative incidence plot as the one in page 388 of the third edition of "An Introduction to Survival Analysis Using Stata", but the example there uses a binomial variable "drug", whilst my analysis has a variable "race" with three categories. I succeed in using predict to calculate the base cumulative incidence function using: predict cif_1_race1, basecif predict cif_2_race1, basecif and predict cif_3_race1, basecif The problem is that I don't know how to calculate the cumulative incidence functions for the other categories of race I tried using stset age_r, id(serial) failure(failure==1) origin(time 14) stcrreg i.race, compete(failure= 2 3) predict cif_1_race1, basecif, generate cif_1_race2 = 1 - (1 - cif_1_race1)^exp(_b[2.race]) generate cif_1_race3 = 1 - (1 - cif_1_race1)^exp(_b[3.race]) stset age_r, id(serial) failure(failure==2) origin(time 14) stcrreg i.race, compete(failure= 1 3) predict cif_2_race1, basecif generate cif_2_race2 = 1 - (1 - cif_1_race1)^exp(_b[2.race]) generate cif_2_race3 = 1 - (1 - cif_1_race1)^exp(_b[3.race]) stset age_r, id(serial) failure(failure==3) origin(time 14) stcrreg i.race, compete(failure= 1 2) predict cif_3_race1, basecif generate cif_3_race2 = 1 - (1 - cif_1_race1)^exp(_b[2.race]) generate cif_3_race3 = 1 - (1 - cif_1_race1)^exp(_b[3.race]) However, when I make the variables for the stacked plot using: gen sum_cif__race1 = cif_1_race1 + cif_2_race1 + cif_3_race1 gen sum_cif__race2 = cif_1_race2 + cif_2_race2 + cif_3_race2 gen sum_cif__race3 = cif_1_race3 + cif_2_race3 + cif_3_race3 I get plots with cumulative incidence functions that go well over 1.00 Am I doing using the wrong formula? Is it possible to do it at all? Thank you for your consideration. Guilherme Kenji Chihaya Tohoku University * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/