Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Subject: RE: st: Situation where multiple imputation may be of no use?
From
Clyde B Schechter <[email protected]>
To
"[email protected]" <[email protected]>
Subject
Subject: RE: st: Situation where multiple imputation may be of no use?
Date
Sat, 11 Feb 2012 20:25:33 +0000
In response to my original query about whether MI is of any use in a situation where only the dependent variable will have missing values, Cameron McIntosh writes:
"So why not try FIML? What analytical technique are you using?
Cam"
The simplified situation I described involves a single continuous outcome variable measured in subjects randomly assigned to two groups. So it's a regression of the outcome against an indicator for treatment group. FIML can be applied to this, but I ran some simulations and in this situation it doesn't perform any differently from complete case analysis. And, from a theoretical perspective, I don't think it should. I don't see how in this situation there is any information in the data set that is not already found in the complete cases. But I'd be delighted to learn that I'm wrong about that.
Clyde Schechter
Department of Family & Social Medicine
Albert Einstein College of Medicine
Bronx, NY, USA
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/