Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

st: state space model estimation in STATA


From   "Adjmal Sekander Sirak" <[email protected]>
To   <[email protected]>
Subject   st: state space model estimation in STATA
Date   Thu, 9 Feb 2012 13:40:08 +0100

Hello Stata list,

I have trouble with the sspace command in STATA. The description of my
problem is lengthy, but detailed:

I use STATA 11 SE with all the latest updates. I want to estimate a so
called Dynamic Nelson-Siegel model for sovereign bond yields, which is
basically just a dynamic factor model. I have daily observations over a span
of several years for yields of zero coupon bonds for 16 maturities ranging
from 3 months to ten years. They are all for the same country, of course.
The model that I want to estimate looks like this:

y_{t}(tau) = Lambda(tau)*f_{t}+eps_{t}
f_{t} = A*f_{t-1} + (I-A)*mu + eta_{t}

where t denotes the time of observation and tau the maturity. y_{t} is a
16x1 vector and f_{t} is usually 3x1, but I discard the third element for
parsimony. This is also done by other authors in the literature. The
elements of Lambda(tau) are fixed values given by the Nelson-Siegel model
and need not be estimated. The two error terms are independent of each other
and of their own lags or leads.

There is a total of 25 parameters to be estimated based on 3001
observations. However, the ML estimation routine invoked by the sspace
command does not converge. In general, the loglikelihood attains values of
about +24000 to +26000 and then I receive an error message either telling me
that a flat region was encountered or that the Hessian is not positive
definite.
Below, you will find the most important parts of a log I have recorded for
the latest run.
I have done a couple of things to ease the problem.
- I have cut the sample at Januray 1st 2008, such as to exclude a very sharp
decline in yields that occured shortly afterwards.
- I have estimated the model using a so called 2-step OLS approach and used
the results as initial values for the ML estimation. It is remarkable that
the log-likelihood associated with these values is about -22 million (!). It
quickly improves, and after 435 iterations it has attained a value of
+24296. Then a refining of the parameters starts and eventually terminates
because of a bad Hessian.
- I set the -difficult- option in the sspace command.

Furthermore, I have generated artificial data from the model I try to
estimate and provided population moments as initial values for the ML
maximization. The routine did converge, but it took her more than 1 hour.

Basically, I have two questions:

1: Could it be that STATA is just incapable of estimating state space models
with say more than 20 parameters? My ultimate goal is to include more
regressors, so the number of parameters would increase at a later stage. If
so, what other packages can you recommend?
2: Am I doing something wrong in the model set-up? How can it be that the
log-likelihood is -22 million when my initial guess comes from a less
sophisticated, but decent estimate of the model? Do I assign the initial
values in a wrong manner? I made sure to use the same order of coefficients
in my initial values vector "init" (see below) as in the parameter vector
e(b). Could you please take a look at my sspace command and the constraints?

Any help will gratefully be appreciated.

Please find below the most important parts of my log-file. The 32
constraints that I impose fix the matrix Lambda(tau) from the model above:


opened on:   9 Feb 2012, 01:21:54

.
. use "Italy_filled.dta"

.
.
.
. constraint drop _all

. constraint define 1 [italy_3m]lev = 1

. constraint define 2 [italy_3m]slo = 0.9139681245

. constraint define 3 [italy_6m]lev = 1

. constraint define 4 [italy_6m]slo = 0.8376600229

. constraint define 5 [italy_9m]lev = 1

. constraint define 6 [italy_9m]slo = 0.7698466392

. constraint define 7 [italy_12m]lev = 1

. constraint define 8 [italy_12m]slo = 0.7094641255

. constraint define 9 [italy_15m]lev = 1

. constraint define 10 [italy_15m]slo = 0.6555907479

. constraint define 11 [italy_18m]lev = 1

. constraint define 12 [italy_18m]slo = 0.6074271117

. constraint define 13 [italy_24m]lev = 1

. constraint define 14 [italy_24m]slo = 0.5255439287

. constraint define 15 [italy_30m]lev = 1

. constraint define 16 [italy_30m]slo = 0.4592799502

. constraint define 17 [italy_36m]lev = 1

. constraint define 18 [italy_36m]slo = 0.4051959175

. constraint define 19 [italy_48m]lev = 1

. constraint define 20 [italy_48m]slo = 0.3236995842

. constraint define 21 [italy_60m]lev = 1

. constraint define 22 [italy_60m]slo = 0.2665880208

. constraint define 23 [italy_72m]lev = 1

. constraint define 24 [italy_72m]slo = 0.2252177110

. constraint define 25 [italy_84m]lev = 1

. constraint define 26 [italy_84m]slo = 0.1943071438

. constraint define 27 [italy_96m]lev = 1

. constraint define 28 [italy_96m]slo = 0.1705510595

. constraint define 29 [italy_108m]lev = 1

. constraint define 30 [italy_108m]slo = 0.151828781

. constraint define 31 [italy_120m]lev = 1

. constraint define 32 [italy_120m]slo = 0.136744642

.
. matrix init = J(1, 57, 1)

. matrix init[1,1] = 0.9971

. matrix init[1,2] = 0.0028

. matrix init[1,3] = 4.8495

. matrix init[1,4] = -0.0003

. matrix init[1,5] = 0.9986

. matrix init[1,6] = -1.4208

. matrix init[1,8] = 0.9139681245

. matrix init[1,10] = 0.8376600229

. matrix init[1,12] = 0.7698466392

. matrix init[1,14] = 0.7094641255

. matrix init[1,16] = 0.6555907479

. matrix init[1,18] = 0.6074271117

. matrix init[1,20] = 0.5255439287

. matrix init[1,22] = 0.4592799502

. matrix init[1,24] = 0.4051959175

. matrix init[1,26] = 0.3236995842

. matrix init[1,28] = 0.2665880208

. matrix init[1,30] = 0.2252177110

. matrix init[1,32] = 0.1943071438

. matrix init[1,34] = 0.1705510595

. matrix init[1,36] = 0.151828781

. matrix init[1,38] = 0.136744642

. matrix init[1,39] = 0.0031

. matrix init[1,40] = -0.003

. matrix init[1,41] = 0.0045

. matrix init[1,42] = 0.0687

. matrix init[1,43] = 0.0134

. matrix init[1,44] = 0.0015

. matrix init[1,45] = 0.0056

. matrix init[1,46] = 0.0124

. matrix init[1,47] = 0.0174

. matrix init[1,48] = 0.0201

. matrix init[1,49] = 0.0185

. matrix init[1,50] = 0.0157

. matrix init[1,51] = 0.0070

. matrix init[1,52] = 0.0018

. matrix init[1,53] = 0.0006

. matrix init[1,54] = 0.0030

. matrix init[1,55] = 0.0078

. matrix init[1,56] = 0.0137

. matrix init[1,57] = 0.0199

.
. sspace (lev L.lev L.slo, state) (slo L.lev L.slo, state) ///
(italy_3m lev slo, noconstant) (italy_6m lev slo, noconstant) ///
(italy_9m lev slo, noconstant) (italy_12m lev slo, noconstant) ///
(italy_15m lev slo, noconstant) (italy_18m lev slo, noconstant) ///
(italy_24m lev slo, noconstant) (italy_30m lev slo, noconstant) ///
(italy_36m lev slo, noconstant) (italy_48m lev slo, noconstant) ///
(italy_60m lev slo, noconstant) (italy_72m lev slo, noconstant) ///
(italy_84m lev slo, noconstant) (italy_96m lev slo, noconstant) ///
(italy_108m lev slo, noconstant) (italy_120m lev slo, noconstant) ///
in 1/3001, constraints(1/32) covstate(unstructured) covobserved(diagonal)
///
technique(bfgs 30 dfp) difficult trace from(init)
-----------------------------------------------------------------------------------------------------------------------------------
Iteration 0:
Parameter vector:
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1     4.8495     -.0003      .9986    -1.4208      .9971
   .0028  -2.888177  -.0538816  -3.219885  -1.339003   -2.15625

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1  -3.251145  -2.592494  -2.195029  -2.025643  -1.953518  -1.994992  -2.077047
 -2.480923  -3.159984   -3.70929  -2.904571

         c23        c24        c25
r1  -2.426816   -2.14518  -1.958518

(setting technique to bfgs)
                                                  log likelihood
 -22048580
Gradient vector (length = 6.56e+08):
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1  -1.09e+07  -1.08e+08   1.86e+08   -6161710  -1.27e+08   3.06e+08
5.21e+07   5.20e+08   2.01e+07   5394.853    8661.72

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1   12309.06    131.864   1014.223   1857.758     3677.1   5067.992
5759.784   8498.294   12013.51   81.54907   3463.534

         c23        c24        c25
r1   6878.738   8596.718   9743.972

Step vector (length = 6.56e+08):
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1  -1.09e+07  -1.08e+08   1.86e+08   -6161710  -1.27e+08   3.06e+08
5.21e+07   5.20e+08   2.01e+07   5394.853    8661.72

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1   12309.06    131.864   1014.223   1857.758     3677.1   5067.992
5759.784   8498.294   12013.51   81.54907   3463.534

         c23        c24        c25
r1   6878.738   8596.718   9743.972

Parameters + step -> new parameters
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1  -1.09e+07  -1.08e+08   1.86e+08   -6161711  -1.27e+08   3.06e+08
5.21e+07   5.20e+08   2.01e+07   5393.514   8659.563

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1   12305.81   129.2715   1012.028   1855.732   3675.147   5065.997
5757.707   8495.813   12010.35   77.83978   3460.629

         c23        c24        c25
r1   6876.312   8594.573   9742.013

                                                  log likelihood =
.
                                                           (initial step
bad)

(1) Reducing step size (step length = 3.28e+08)
New parameter vector:
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1   -5468925  -5.42e+07   9.29e+07   -3080856  -6.34e+07   1.53e+08
2.60e+07   2.60e+08   1.00e+07   2696.088   4328.704

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1    6151.28   63.33949   504.9167   926.8534   1836.597   2532.001
2877.815   4246.666   6003.597   37.06524   1728.862

         c23        c24        c25
r1   3436.942   4296.214   4870.027

                                                  log likelihood =
.

[...]
(26) Reducing step size (step length = 9.771832)
New parameter vector:
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1   4.686513  -1.614795   3.768134  -1.512617  -.8935636
4.567683  -2.112357   7.696786  -2.921106  -1.338923  -2.156121

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1  -3.250962  -2.592492  -2.195014  -2.025615  -1.953463  -1.994917  -2.076961
 -2.480796  -3.159805  -3.709289   -2.90452

         c23        c24        c25
r1  -2.426713  -2.145052  -1.958373

                                                  log likelihood
= -1747077.9
[...]
Iteration 435:
Parameter vector:
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1   .0073259   .0011075   .9976741  -.0081533   .9988128
.0009616  -2.969368  -.0433153  -2.625749  -.3030527  -.6747271

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1  -1.090965  -1.528132  -1.933222  -2.395474  -8.722267  -3.255435   -3.28521
 -4.237834  -2.861202  -2.037721  -1.558244

         c23        c24        c25
r1  -1.246959  -1.037893  -.8863995


Changed elements of parameter vector:

         c1        c2
r1  1.04e-06  1.17e-06

                                                  log likelihood =
24296.763
                                                                  (backed
up)
                                                     g inv(H) g' =
4.453e-06
Gradient vector (length = .4679292):
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1  -.0194624   .2637659   -.072292   .0743563  -.3376707   .0521295
.0124938   .1099943   .0106004   .0223551   .0182446

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1   .0009588    .000975   .0146925  -.0373481    -.00183  -.0055763
.0039956   .0003285  -.0202807   .0371865  -.0158965

         c23        c24        c25
r1  -.0434237  -.0207417  -.0478214
-----------------------------------------------------------------------------------------------------------------------------------
Refining estimates:
-----------------------------------------------------------------------------------------------------------------------------------
Iteration 0:
Parameter vector:
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1   .0073259   .0011075   .9976741  -.0081533   .9988128   .0009616
.0026354  -.0022236   .0071159   .5454712   .2593818

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1   .1128237   .0470632   .0209327   .0083046   2.65e-08   .0014872
.0014012   .0002085   .0032718   .0169847   .0443125

         c23        c24        c25
r1   .0825858   .1254577   .1698569

                                                  log likelihood =
24296.763
                                                                  (backed
up)
Gradient vector (length = 34473.89):
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1  -.0194624   .2637658  -.0722921   .0743563  -.3376711   .0521295
3.994529    3.84967   1.011552   .0204915   .0351693

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1   .0042489   .0103589   .3509474  -2.248642  -34473.89  -1.874775
1.425784   .7877479  -3.099286   1.094707  -.1793684

         c23        c24        c25
r1  -.2629005  -.0826643  -.1407696

Step vector (length = .0006004):
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1  -.0000349   .0000109  -.0000362    -.00011
7.83e-06  -6.11e-07  -8.97e-06  -4.84e-07   .0001031    .000444   .0002568

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1   .0001368   .0000686   .0000323   .0000114  -6.03e-06  -2.33e-06
3.50e-07   5.01e-06  -7.90e-06  -.0000302  -.0000591

         c23        c24        c25
r1  -.0000898  -.0001173  -.0001448

Parameters + step -> new parameters
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1   .0072911   .0011184   .9976379  -.0082633   .9988207    .000961
.0026264  -.0022241    .007219   .5459152   .2596386

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1   .1129605   .0471318    .020965    .008316  -6.01e-06   .0014849
.0014016   .0002135   .0032639   .0169545   .0442534

         c23        c24        c25
r1    .082496   .1253404   .1697121

                                                  log likelihood =
.
                                                           (initial step
bad)
[...]
Iteration 14:
Parameter vector:
          c1         c2         c3         c4         c5         c6
c7         c8         c9        c10        c11
r1   .0073258   .0011075    .997674  -.0081537   .9988129   .0009616
.0026353  -.0022236   .0071163   .5454731   .2593829

         c12        c13        c14        c15        c16        c17
c18        c19        c20        c21        c22
r1   .1128243   .0470635   .0209328   .0083046   1.27e-10   .0014872
.0014012   .0002085   .0032718   .0169846   .0443123

         c23        c24        c25
r1   .0825854   .1254572   .1698563

optimization terminated because the negative hessian in the untransformed
space is not positive definite; it may be that your model
is not identified
r(430);

end of do-file

r(430);

. log close

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index