Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: Clarify, tfunc(exp)
From
Renzo Carriero <[email protected]>
To
[email protected]
Subject
st: Clarify, tfunc(exp)
Date
Fri, 13 Jan 2012 09:36:25 +0100
Dear Statalist users,
I have a question about the tfunc(exp) option of simqi command in King's
et al. Clarify command suite. I can't understand how this option exactly
compute exponentiated expected value. My depvar is a log ratio, say
y=ln(a/b). My linear regression model contains a 4-category nominal
variable (indicated by 3 dummies) plus covariates. When I compute mean
predicted values on the log scale, results yielded by simqi coincide
with those yielded by Stata's command adjust. On the contrary, when I
ask for expected values in the original scale, that is exp(y), they
markedly differ. It seems that Stata (adjust command with the "exp"
option) exponentiates the mean expected value, such as exp[E(y|x)],
while simqi does not. So what is exactly the way in which simqi
transforms expected values in the original scale?
To help, I add below a simplified example of what I mean using Stata's
auto dataset
Many thanks
Renzo
--
Renzo Carriero
Dipartimento di Scienze Sociali
via S. Ottavio 50
10124 Torino - Italy
+390116702658 (office)
+393898160069 (mobile)
+390116702612 (fax)
sysuse auto.dta
g lny=ln(price/mpg)/*generate a log var similar to mine*/
xtile x=length, nquantile(4) /*generate a 4 category variable from
length variable"
tab x, gen(x)/*generate 4 dummies*/
reg lny x2-x4/*x1 is omitted as reference category*/
Source | SS df MS Number
of obs = 74
-------------+------------------------------ F(
3, 70) = 18,48
Model | 10,7554461 3 3,58514872 Prob> F =
0,0000
Residual | 13,580584 70 ,194008343 R-squared =
0,4420
-------------+------------------------------ Adj R-squared =
0,4180
Total | 24,3360302 73 ,333370277 Root MSE =
,44046
------------------------------------------------------------------------------
lny | Coef. Std. Err. t P>|t| [95% Conf.
Interval]
-------------+----------------------------------------------------------------
x2 | ,576453 ,1461643 3,94 0,000 ,2849374
,8679685
x3 | ,635685 ,1376187 4,62 0,000 ,3612132
,9101569
x4 | 1,050355 ,1437037 7,31 0,000 ,7637466
1,336962
_cons | 5,078354 ,0961171 52,84 0,000 4,886655
5,270054
------------------------------------------------------------------------------
adjust x2=0 x3=0 x4=0 /*compute expected value for omitted category 1*/
Dependent variable: lny Command: regress
Covariates set to value: x2 = 0, x3 = 0, x4 = 0
------------------------------------------------------------------------------------------------------
----------------------
All | xb
----------+-----------
| 5,07835
----------------------
Key: xb = Linear Prediction
adjust x2=0 x3=0 x4=0 , exp /*compute expected value for category 1 in
the original scale (price/mpg)*/
Dependent variable: lny Command: regress
Covariates set to value: x2 = 0, x3 = 0, x4 = 0
------------------------------------------------------------------------------------------------------
----------------------
All | exp(xb)
----------+-----------
| *160,51 *
----------------------
Key: exp(xb) = exp(xb)
estsimp reg lny x2-x4/*replicate analysis with estsimp*/
setx 0 /*set x1=1*/
simqi
*this output omitted, it is roughly equal to that of adjust without exp
option
simqi, tfunc(exp)
Quantity of Interest | Mean Std. Err. [95% Conf.
Interval]
---------------------------+--------------------------------------------------
E[exp(lny)] | *177,6523 *17,95269 145,2497 215,657
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/