Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Tirthankar Chakravarty <tirthankar.chakravarty@gmail.com> |
To | statalist@hsphsun2.harvard.edu |
Subject | Re: st: Comparing coefficients from two ivregress models |
Date | Sat, 17 Sep 2011 07:57:15 -0700 |
You appear to have not included the onestep winitial(unadjusted, indep) vce(unadjusted) option in your joint estimation. T On Sat, Sep 17, 2011 at 7:02 AM, John Antonakis <John.Antonakis@unil.ch> wrote: > Hi: > > I am trying to use the procedure suggested by Tirthankar below. I have three > equations that I would like to "stack" and then make cross-equations tests. > When I estimate the three equations separately, things work well, as I show > below: > > . *Eq 1 alone > . gmm (turnover - {b1}*lmx - {b0}), /// >> instruments(l_extra f_IQ f_consc) /// >> onestep winitial(unadjusted, indep) vce(unadjusted) > > Step 1 > Iteration 0: GMM criterion Q(b) = 2025.9871 > Iteration 1: GMM criterion Q(b) = .06748029 > Iteration 2: GMM criterion Q(b) = .06748029 > > GMM estimation > > Number of parameters = 2 > Number of moments = 4 > Initial weight matrix: Unadjusted Number of obs = > 1000 > > ------------------------------------------------------------------------------ > | Coef. Std. Err. z P>|z| [95% Conf. > Interval] > -------------+---------------------------------------------------------------- > /b1 | .0184804 .043515 0.42 0.671 -.0668075 > .1037682 > /b0 | 44.4598 1.313379 33.85 0.000 41.88563 > 47.03398 > ------------------------------------------------------------------------------ > Instruments for equation 1: l_extra f_IQ f_consc _cons > > . > . *Eq 2 alone > . gmm (turnover - {c1}*lmx - {c2}*l_incentives - {c3}*f_neuro - {c0}), /// >> instruments(l_extra f_IQ f_consc l_incentives f_neuro) /// >> onestep winitial(unadjusted, indep) vce(unadjusted) > > Step 1 > Iteration 0: GMM criterion Q(b) = 2044.3282 > Iteration 1: GMM criterion Q(b) = .09468009 > Iteration 2: GMM criterion Q(b) = .09468009 > > GMM estimation > > Number of parameters = 4 > Number of moments = 6 > Initial weight matrix: Unadjusted Number of obs = > 1000 > > ------------------------------------------------------------------------------ > | Coef. Std. Err. z P>|z| [95% Conf. > Interval] > -------------+---------------------------------------------------------------- > /c1 | -.0010489 .0324056 -0.03 0.974 -.0645627 > .0624648 > /c2 | -.9454141 .0641511 -14.74 0.000 -1.071148 > -.8196802 > /c3 | 1.026038 .0621628 16.51 0.000 .9042014 > 1.147875 > /c0 | 18.40918 2.636117 6.98 0.000 13.24249 > 23.57588 > ------------------------------------------------------------------------------ > Instruments for equation 1: l_extra f_IQ f_consc l_incentives f_neuro _cons > > . > . *Eq 3 alone > . gmm (turnover - {d1}*lmx - {d2}*l_incentives - {d3}*l_iq - {d4}*c_policies > - {d5}*f_neuro - {d >> 0}), /// >> instruments(l_extra f_IQ f_consc l_incentives l_iq c_policies f_neuro) >> /// >> onestep winitial(unadjusted, indep) vce(unadjusted) > > Step 1 > Iteration 0: GMM criterion Q(b) = 2062.4499 > Iteration 1: GMM criterion Q(b) = .00820186 > Iteration 2: GMM criterion Q(b) = .00820186 (backed up) > > GMM estimation > > Number of parameters = 6 > Number of moments = 8 > Initial weight matrix: Unadjusted Number of obs = > 1000 > > ------------------------------------------------------------------------------ > | Coef. Std. Err. z P>|z| [95% Conf. > Interval] > -------------+---------------------------------------------------------------- > /d1 | -.0173308 .0183817 -0.94 0.346 -.0533583 > .0186967 > /d2 | -.9578794 .0357112 -26.82 0.000 -1.027872 > -.8878869 > /d3 | -.9651611 .0365803 -26.38 0.000 -1.036857 > -.893465 > /d4 | -1.02468 .0292714 -35.01 0.000 -1.082051 > -.9673096 > /d5 | 1.000026 .0346869 28.83 0.000 .9320408 > 1.068011 > /d0 | 146.6398 3.823647 38.35 0.000 139.1456 > 154.134 > ------------------------------------------------------------------------------ > Instruments for equation 1: l_extra f_IQ f_consc l_incentives l_iq > c_policies f_neuro _cons > > > However, when I estimate them all together I get and error with respect to > the weight matrix not being positive-definite: > > > . gmm (eq1: turnover - {b1}*lmx - {b0}) /// >> (eq2: turnover - {c1}*lmx - {c2}*l_incentives - {c3}*f_neuro - {c0}) >> /// >> (eq3: turnover - {d1}*lmx - {d2}*l_incentives - {d3}*l_iq - >> {d4}*c_policies - {d5}*f_neuro >> - {d0}), /// >> instruments(eq1: l_extra f_IQ f_consc) /// >> instruments(eq2: l_extra f_IQ f_consc l_incentives f_neuro) /// >> instruments(eq3: l_extra f_IQ f_consc l_incentives l_iq c_policies >> f_neuro) > > initial weight matrix not positive definite > > Is there anyway to get around this? > > Thanks, > John. > > __________________________________________ > > Prof. John Antonakis > Faculty of Business and Economics > Department of Organizational Behavior > University of Lausanne > Internef #618 > CH-1015 Lausanne-Dorigny > Switzerland > Tel ++41 (0)21 692-3438 > Fax ++41 (0)21 692-3305 > http://www.hec.unil.ch/people/jantonakis > > Associate Editor > The Leadership Quarterly > __________________________________________ > > > On 08.09.2011 10:48, Tirthankar Chakravarty wrote: >> Use -gmm- and specify that you want the equations to be considered >> independently (the moment conditions are independent). Note that the >> point estimates are identical from two independent calls to -ivregress >> 2sls- and the corresponding -gmm-. Throughout, "turn" is the included >> endogenous variable. >> >> /**********************************************/ >> sysuse auto, clear >> ivregress 2sls mpg gear_ratio (turn = weight length headroom) >> ivregress 2sls mpg gear_ratio length (turn = weight length headroom) >> >> gmm (eq1: mpg - {b1}*turn - {b2}*gear_ratio - {b0}) /// >> (eq2: mpg - {c1}*turn - {c2}*gear_ratio -{c3}*length - {c0}), /// >> instruments(gear_ratio weight length headroom) /// >> onestep winitial(unadjusted, indep) >> test [b2]_cons = [c2]_cons >> /**********************************************/ >> >> T >> >> On Thu, Sep 8, 2011 at 1:12 AM, Maarten Buis <maartenlbuis@gmail.com> >> wrote: >>> On Thu, Sep 8, 2011 at 9:56 AM, YUNHEE CHANG wrote: >>>> I am estimating two differently-specified IV regressions and trying to >>>> compare coefficients between the two models. I tried: >>>> >>>> ivregress 2sls y x1 x2 (x1=z) >>>> est store reg1 >>>> >>>> ivregress 2sls y x1 x2 x3 (x1=z) >>>> est store reg2 >>>> >>>> test [reg1]_b[x1]=[reg2]_b[x1] >>>> >>>> Then I get "equation [reg1] not found" error. What am I doing wrong? >>> That might have worked after you combined both models with -suest-, >>> but -ivregress- cannot be used together with -suest-. So what you want >>> cannot be done. >>> >>> Sorry, >>> Maarten >>> >>> -------------------------- >>> Maarten L. Buis >>> Institut fuer Soziologie >>> Universitaet Tuebingen >>> Wilhelmstrasse 36 >>> 72074 Tuebingen >>> Germany >>> >>> >>> http://www.maartenbuis.nl >>> -------------------------- >>> * >>> * For searches and help try: >>> * http://www.stata.com/help.cgi?search >>> * http://www.stata.com/support/statalist/faq >>> * http://www.ats.ucla.edu/stat/stata/ >>> >> >> > > * > * For searches and help try: > * http://www.stata.com/help.cgi?search > * http://www.stata.com/support/statalist/faq > * http://www.ats.ucla.edu/stat/stata/ > -- Tirthankar Chakravarty tchakravarty@ucsd.edu tirthankar.chakravarty@gmail.com * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/