Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Richard Williams <richardwilliams.ndu@gmail.com> |
To | statalist@hsphsun2.harvard.edu, statalist@hsphsun2.harvard.edu |
Subject | Re: st:glm with bin family and link probit VS. probit |
Date | Tue, 31 May 2011 00:43:54 -0500 |
At 11:13 PM 5/30/2011, Judy You wrote:
Dear Stata Experts: I have a question regards to comparisons of the two models: glm with bin family and link probit VS. probit. The data is number of people who died from infection disease by age group as follows. agegp 0 1 0 154573 2 15 97581 0 25 159888 9 40 191122 35 65 29329 20 I got the different results by using glm with bin family and link probit and probit. The main difference is that glm dropped the last dummy variable "f65", while keep all the coefficient even with the zeo values (eg., f15 and m15). The Probit dropped not only f65, but also the zeo values eg., f15 and m15. The different results lead to different estimation of marginal effects followed by the two models. Any idea and advice how to control the two models using the same independent dummy variables? Your help will be much appreciated! . glm AB m0- f65 [fw= ABfreq], f(b) l(probit) iterate(10) note: f65 omitted because of collinearity Iteration 0: log likelihood = -47450.19 Iteration 1: log likelihood = -825.64878 Iteration 2: log likelihood = -629.32298 Iteration 3: log likelihood = -622.2711 Iteration 4: log likelihood = -621.33495 Iteration 5: log likelihood = -621.31077 Iteration 6: log likelihood = -621.30724 Iteration 7: log likelihood = -621.30711 Iteration 8: log likelihood = -621.30711 Iteration 9: log likelihood = -621.30711 Iteration 10: log likelihood = -621.30711 convergence not achieved Generalized linear models No. of obs = 632559 Optimization : ML Residual df = 632549 Scale parameter = 1 Deviance = 1242.614219 (1/df) Deviance = .0019645 Pearson = 534978.001 (1/df) Pearson = .8457495 Variance function: V(u) = u*(1-u) [Bernoulli] Link function : g(u) = invnorm(u) [Probit] AIC = .001996 Log likelihood = -621.3071096 BIC = -8448049 OIM AB Coef. Std. Err. z P>z [95% Conf. Interval] m0 -.9250873 .2495697 -3.71 0.000 -1.414235 -.4359398 m15 -2.901722 7.830577 -0.37 0.711 -18.24937 12.44593 m25 -.5044691 .146919 -3.43 0.001 -.792425 -.2165132 m40 -.2180508 .1199777 -1.82 0.069 -.4532027 .0171012 m65 .1468668 .133816 1.10 0.272 -.1154077 .4091414 f0 -.9122453 .2501379 -3.65 0.000 -1.402507 -.4219841 f15 -2.901722 8.073848 -0.36 0.719 -18.72617 12.92273 f25 -.6696904 .1741904 -3.84 0.000 -1.011097 -.3282836 f40 -.3572294 .1297122 -2.75 0.006 -.6114606 -.1029981 f65 (omitted) _cons -3.288246 .1063749 -30.91 0.000 -3.496737 -3.079755 . probit AB m0- f65 [fw= ABfreq], iterate(10) note: m15 != 0 predicts failure perfectly m15 dropped and 190 obs not used note: f15 != 0 predicts failure perfectly f15 dropped and 190 obs not used note: f65 omitted because of collinearity Iteration 0: log likelihood = -660.01746 Iteration 1: log likelihood = -629.8237 Iteration 2: log likelihood = -621.8218 Iteration 3: log likelihood = -621.31032 Iteration 4: log likelihood = -621.30614 Iteration 5: log likelihood = -621.30613Probit regression Number of obs = 534978LR chi2(7) = 77.42 Prob > chi2 = 0.0000 Log likelihood = -621.30613 Pseudo R2 = 0.0587 AB Coef. Std. Err. z P>z [95% Conf. Interval] m0 -.9250871 .2495696 -3.71 0.000 -1.414235 -.4359397 m15 (omitted) m25 -.5044691 .146919 -3.43 0.001 -.792425 -.2165132 m40 -.2180508 .1199777 -1.82 0.069 -.4532027 .0171012 m65 .1468668 .133816 1.10 0.272 -.1154077 .4091414 f0 -.9122452 .2501378 -3.65 0.000 -1.402506 -.4219841 f15 (omitted) f25 -.6696904 .1741904 -3.84 0.000 -1.011097 -.3282836 f40 -.3572294 .1297122 -2.75 0.006 -.6114606 -.1029981 f65 (omitted) _cons -3.288246 .1063749 -30.91 0.000 -3.496737 -3.079755 * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/
------------------------------------------- Richard Williams, Notre Dame Dept of Sociology OFFICE: (574)631-6668, (574)631-6463 HOME: (574)289-5227 EMAIL: Richard.A.Williams.5@ND.Edu WWW: http://www.nd.edu/~rwilliam * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/