Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: RE: xtmixed variance functions
From
"Feiveson, Alan H. (JSC-SK311)" <[email protected]>
To
"[email protected]" <[email protected]>
Subject
st: RE: xtmixed variance functions
Date
Tue, 8 Mar 2011 08:31:02 -0600
Leslie - I don't know if this is what you're asking, but you can model the lowest-level variance in -xtmixed- by introducing the observation number as an artificial "level" e.g.
Suppose this is my original analysis:
. xtmixed y5 post ||isub: ,nolog
Mixed-effects REML regression Number of obs = 48
Group variable: isub Number of groups = 24
Obs per group: min = 2
avg = 2.0
max = 2
Wald chi2(1) = 26.09
Log restricted-likelihood = -206.45646 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
y5 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
post | -20.22917 3.960537 -5.11 0.000 -27.99168 -12.46666
_cons | 102.9958 4.68471 21.99 0.000 93.81397 112.1777
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
isub: Identity |
sd(_cons) | 18.39799 3.547973 12.60723 26.84856
-----------------------------+------------------------------------------------
sd(Residual) | 13.7197 2.022859 10.27642 18.31671
------------------------------------------------------------------------------
LR test vs. linear regression: chibar2(01) = 12.25 Prob >= chibar2 = 0.0002
But I want to model the residual variance as a function of a variable x - so now I introduce a new "level" that is just the observation number:
. gen ord = _n // (my artificial new level)
. xtmixed y5 post ||isub: ||ord: x,noc nolog
Mixed-effects REML regression Number of obs = 48
-----------------------------------------------------------
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
----------------+------------------------------------------
isub | 24 2 2.0 2
ord | 48 1 1.0 1
-----------------------------------------------------------
Wald chi2(1) = 29.89
Log restricted-likelihood = -205.91786 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
y5 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
post | -21.0016 3.841315 -5.47 0.000 -28.53044 -13.47276
_cons | 102.7677 4.689839 21.91 0.000 93.57579 111.9596
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
isub: Identity |
sd(_cons) | 18.14146 3.553234 12.35815 26.6312
-----------------------------+------------------------------------------------
ord: Identity |
sd(x) | 1.092523 .1624449 .8163333 1.462157
-----------------------------+------------------------------------------------
sd(Residual) | .0291567 .0633542 .0004123 2.062069
------------------------------------------------------------------------------
LR test vs. linear regression: chi2(2) = 13.33 Prob > chi2 = 0.0013
Note: LR test is conservative and provided only for reference.
Hope this helps
Al Feiveson
-----Original Message-----
From: [email protected] [mailto:[email protected]] On Behalf Of Leslie Roche
Sent: Monday, March 07, 2011 2:12 PM
To: [email protected]
Subject: st: xtmixed variance functions
Hi All,
I have been trying to figure out how to specify a variance function in
Stata for within-group heteroscedasticity. I have run into this
problem a few times. Basically, my residuals by predicted plot show a
classic increase in variance. Even though the various residual plots
looked fine, I have tried residuals(independent, by(id)), and
residuals(independent, by(x category)), but none of these worked. The
other residuals options available require a time variable, which I do
not have.
In S-plus (and R), the function I generally use to model this type of
heteroscedasticity is "weights=varPower())". Here, the default
covariate is ~fitted. Is there a similar function in Stata that is
available outside the base commands? I would prefer not to have to
transform the response variable. Any suggestions much appreciated.
Thanks,
Leslie
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/