Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Erkal Ersoy <erkal6@gmail.com> |
To | statalist@hsphsun2.harvard.edu |
Subject | st: ivreg2 vs. Manual IV |
Date | Mon, 7 Mar 2011 03:16:01 +0000 |
Hello Statalisters, Apologies in advance if my question has already been answered somewhere. It feels like the answer should be out there somewhere, but I spent a lot of time looking for it and couldn't get to it. The essence of my question is possibly about the inner-workings of the command "ivreg2." As illustrated below, I keep getting different estimates on some coefficients when I do a 2SLS estimation manually rather than using ivreg2 directly. I am trying to evaluate the effect of education on earnings, so please pay attention only to the coefficients on educ (education), age and agesq (age squared). YR* are the years of birth of individuals, and QTR* are the interaction terms of their years of birth with quarters of birth--as done in Angrist and Krueger (1991). In the ivreg2 regression, the coefficients on educ, age, and agesq are 0.0775**, 0.0961, and -0.0011 respectively. When I go ahead and do the first and second stage regressions by hand, I get 0.0775** on educ, 0.0694** on age, and -0.0007 on agesq. Note that I used ** to denote that the coefficient is statistically significant at the 5% level. The fact that the coefficient on education stays the same is comforting, but the 3 percentage-point change in the coefficient of age is not... It also seems to become statistically significant when the manual approach is used. I have not been able to figure out why this is happening. Am I overlooking something simple? or Is ivreg2 doing something inherently that I am not aware of? Thank you in advance and I look forward to hearing from you! Best, Erkal Here is the output: . ivreg2 loghrearn age agesq YR* (educ=QTR*), robust Warning - collinearities detected Vars dropped: YR57 YR58 IV (2SLS) estimation -------------------- Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity Number of obs = 1930 F( 30, 1899) = 10.25 Prob > F = 0.0000 Total (centered) SS = 442.0938306 Centered R2 = 0.2791 Total (uncentered) SS = 10400.84512 Uncentered R2 = 0.9694 Residual SS = 318.6885935 Root MSE = .4064 ------------------------------------------------------------------------------ | Robust loghrearn | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .0775441 .0160336 4.84 0.000 .0461187 .1089695 age | .0960978 .1423516 0.68 0.500 -.1829063 .3751018 agesq | -.0010697 .0017913 -0.60 0.550 -.0045807 .0024412 YR30 | .0729663 .1068284 0.68 0.495 -.1364134 .2823461 YR31 | .07704 .1309457 0.59 0.556 -.1796089 .3336889 YR32 | .0973292 .163443 0.60 0.552 -.2230131 .4176716 YR33 | .1417888 .1929499 0.73 0.462 -.2363861 .5199638 YR34 | -.1038325 .2259978 -0.46 0.646 -.54678 .339115 YR35 | -.0904907 .2650057 -0.34 0.733 -.6098924 .428911 YR36 | .0211021 .2889079 0.07 0.942 -.5451469 .5873512 YR37 | -.0095714 .3094713 -0.03 0.975 -.6161241 .5969812 YR38 | -.1243342 .3284837 -0.38 0.705 -.7681505 .519482 YR39 | .0318703 .33975 0.09 0.925 -.6340275 .6977681 YR40 | -.012432 .3502283 -0.04 0.972 -.6988668 .6740027 YR41 | -.0104493 .362811 -0.03 0.977 -.7215458 .7006471 YR42 | -.0702727 .3685554 -0.19 0.849 -.792628 .6520826 YR43 | .0575015 .3747713 0.15 0.878 -.6770368 .7920399 YR44 | .0096079 .370298 0.03 0.979 -.7161628 .7353786 YR45 | .002713 .3662465 0.01 0.994 -.715117 .720543 YR46 | -.0635162 .3581167 -0.18 0.859 -.765412 .6383797 YR47 | -.0433715 .343595 -0.13 0.900 -.7168054 .6300624 YR48 | .0054387 .3286098 0.02 0.987 -.6386247 .6495021 YR49 | -.099746 .3100412 -0.32 0.748 -.7074155 .5079235 YR50 | -.0773254 .2898625 -0.27 0.790 -.6454454 .4907946 YR51 | .0145518 .2642092 0.06 0.956 -.5032888 .5323923 YR52 | -.0292709 .2321661 -0.13 0.900 -.4843081 .4257663 YR53 | .0184112 .1987312 0.09 0.926 -.3710947 .4079172 YR54 | -.0401541 .1639762 -0.24 0.807 -.3615416 .2812333 YR55 | -.0174335 .1241698 -0.14 0.888 -.2608018 .2259348 YR56 | -.0569723 .0847047 -0.67 0.501 -.2229904 .1090458 _cons | -.7115404 2.495252 -0.29 0.776 -5.602144 4.179063 ------------------------------------------------------------------------------ Underidentification test (Kleibergen-Paap rk LM statistic): 87.887 Chi-sq(87) P-val = 0.4532 ------------------------------------------------------------------------------ Weak identification test (Cragg-Donald Wald F statistic): 1.147 (Kleibergen-Paap rk Wald F statistic): 1.139 Stock-Yogo weak ID test critical values: 5% maximal IV relative bias 21.12 10% maximal IV relative bias 10.91 20% maximal IV relative bias 5.69 30% maximal IV relative bias 3.92 10% maximal IV size 222.24 15% maximal IV size 113.33 20% maximal IV size 76.67 25% maximal IV size 58.36 Source: Stock-Yogo (2005). Reproduced by permission. NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors. ------------------------------------------------------------------------------ Hansen J statistic (overidentification test of all instruments): 82.395 Chi-sq(86) P-val = 0.5901 ------------------------------------------------------------------------------ Instrumented: educ Included instruments: age agesq YR30 YR31 YR32 YR33 YR34 YR35 YR36 YR37 YR38 YR39 YR40 YR41 YR42 YR43 YR44 YR45 YR46 YR47 YR48 YR49 YR50 YR51 YR52 YR53 YR54 YR55 YR56 Excluded instruments: QTR230 QTR231 QTR232 QTR233 QTR234 QTR235 QTR236 QTR237 QTR238 QTR239 QTR240 QTR241 QTR242 QTR243 QTR244 QTR245 QTR246 QTR247 QTR248 QTR249 QTR250 QTR251 QTR252 QTR253 QTR254 QTR255 QTR256 QTR257 QTR258 QTR330 QTR331 QTR332 QTR333 QTR334 QTR335 QTR336 QTR337 QTR338 QTR339 QTR340 QTR341 QTR342 QTR343 QTR344 QTR345 QTR346 QTR347 QTR348 QTR349 QTR350 QTR351 QTR352 QTR353 QTR354 QTR355 QTR356 QTR357 QTR358 QTR430 QTR431 QTR432 QTR433 QTR434 QTR435 QTR436 QTR437 QTR438 QTR439 QTR440 QTR441 QTR442 QTR443 QTR444 QTR445 QTR446 QTR447 QTR448 QTR449 QTR450 QTR451 QTR452 QTR453 QTR454 QTR455 QTR456 QTR457 QTR458 Dropped collinear: YR57 YR58 ------------------------------------------------------------------------------ . reg educ age agesq YR* QTR* note: YR42 omitted because of collinearity note: YR58 omitted because of collinearity Source | SS df MS Number of obs = 1930 -------------+------------------------------ F(116, 1813) = 1.72 Model | 1172.63491 116 10.1089217 Prob > F = 0.0000 Residual | 10684.3231 1813 5.89317326 R-squared = 0.0989 -------------+------------------------------ Adj R-squared = 0.0412 Total | 11856.958 1929 6.14668638 Root MSE = 2.4276 ------------------------------------------------------------------------------ educ | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .4445861 .4307161 1.03 0.302 -.4001659 1.289338 agesq | -.0060692 .0054336 -1.12 0.264 -.0167259 .0045876 YR30 | -.8890242 .9932762 -0.90 0.371 -2.83711 1.059062 YR31 | .6960782 .9116261 0.76 0.445 -1.09187 2.484026 YR32 | .6377634 .9109859 0.70 0.484 -1.148929 2.424456 YR33 | 1.800134 .8846079 2.03 0.042 .0651759 3.535092 YR34 | .5381042 1.082161 0.50 0.619 -1.584309 2.660517 YR35 | -2.185563 1.041604 -2.10 0.036 -4.228433 -.1426933 YR36 | -.4344303 1.228448 -0.35 0.724 -2.843753 1.974892 YR37 | .6838194 1.199013 0.57 0.569 -1.667774 3.035413 YR38 | -1.465554 1.275869 -1.15 0.251 -3.967881 1.036773 YR39 | -.1861233 1.234434 -0.15 0.880 -2.607185 2.234938 YR40 | -1.394554 1.344123 -1.04 0.300 -4.030746 1.241638 YR41 | 1.02279 1.292272 0.79 0.429 -1.511709 3.55729 YR42 | (omitted) YR43 | -.1970156 1.392313 -0.14 0.887 -2.927722 2.53369 YR44 | 1.018107 1.274471 0.80 0.424 -1.48148 3.517694 YR45 | -1.504632 1.385526 -1.09 0.278 -4.222028 1.212764 YR46 | .556196 1.250079 0.44 0.656 -1.89555 3.007942 YR47 | -.7041711 1.166875 -0.60 0.546 -2.992731 1.584389 YR48 | .2142667 1.132912 0.19 0.850 -2.007683 2.436216 YR49 | -.6242047 1.097718 -0.57 0.570 -2.777129 1.528719 YR50 | -.1981569 1.042875 -0.19 0.849 -2.24352 1.847206 YR51 | .9638388 .9958603 0.97 0.333 -.9893155 2.916993 YR52 | -.823932 .9013091 -0.91 0.361 -2.591645 .9437814 YR53 | -.2495645 .8451451 -0.30 0.768 -1.907125 1.407996 YR54 | .4278504 .8061783 0.53 0.596 -1.153286 2.008986 YR55 | .2133633 .7942078 0.27 0.788 -1.344295 1.771022 YR56 | .4657228 .6636603 0.70 0.483 -.8358964 1.767342 YR57 | -.360123 .6362917 -0.57 0.571 -1.608065 .8878189 YR58 | (omitted) QTR230 | 1 1.13807 0.88 0.380 -1.232066 3.232066 QTR231 | -1.492063 1.223388 -1.22 0.223 -3.891462 .9073353 QTR232 | .6 1.2536 0.48 0.632 -1.858652 3.058652 QTR233 | -2.897436 1.19813 -2.42 0.016 -5.247297 -.5475746 QTR234 | -.6805556 1.179595 -0.58 0.564 -2.994063 1.632952 QTR235 | 2.121212 1.581181 1.34 0.180 -.9799165 5.222341 QTR236 | .8214286 1.256395 0.65 0.513 -1.642706 3.285563 QTR237 | .1666667 1.27945 0.13 0.896 -2.342685 2.676018 QTR238 | 2.375 1.128003 2.11 0.035 .1626788 4.587321 QTR239 | -.1666667 1.232046 -0.14 0.892 -2.583047 2.249713 QTR240 | -.2083333 1.108036 -0.19 0.851 -2.381495 1.964829 QTR241 | -2.763636 1.060689 -2.61 0.009 -4.843937 -.6833361 QTR242 | -.6941176 1.235027 -0.56 0.574 -3.116343 1.728108 QTR243 | -.05 1.062791 -0.05 0.962 -2.134424 2.034424 QTR244 | -1.3 1.005116 -1.29 0.196 -3.271307 .6713073 QTR245 | .4444444 1.179595 0.38 0.706 -1.869063 2.757952 QTR246 | -1.365546 .8761268 -1.56 0.119 -3.08387 .3527779 QTR247 | .8033794 .6860974 1.17 0.242 -.5422451 2.149004 QTR248 | -.2731092 .6737625 -0.41 0.685 -1.594542 1.048323 QTR249 | 1.271212 .6879242 1.85 0.065 -.0779952 2.620419 QTR250 | 1.114846 .792013 1.41 0.159 -.438508 2.6682 QTR251 | -1.213636 .7500201 -1.62 0.106 -2.684631 .2573581 QTR252 | .7857143 .6611588 1.19 0.235 -.5109989 2.082427 QTR253 | -2.58e-14 .6799908 -0.00 1.000 -1.333648 1.333648 QTR254 | -.8030303 .668171 -1.20 0.230 -2.113496 .5074357 QTR255 | -.5035842 .7193753 -0.70 0.484 -1.914476 .9073074 QTR256 | -.3017078 .6028524 -0.50 0.617 -1.484066 .8806505 QTR257 | .3812636 .625775 0.61 0.542 -.8460521 1.608579 QTR258 | -.2581522 .7902837 -0.33 0.744 -1.808114 1.29181 QTR330 | .75 1.154547 0.65 0.516 -1.514383 3.014383 QTR331 | -1.414141 1.091119 -1.30 0.195 -3.554123 .7258406 QTR332 | -.8 1.085649 -0.74 0.461 -2.929255 1.329255 QTR333 | -.8307692 1.021097 -0.81 0.416 -2.833419 1.17188 QTR334 | -.325 1.383937 -0.23 0.814 -3.039278 2.389278 QTR335 | .4545455 1.173723 0.39 0.699 -1.847446 2.756536 QTR336 | .0714286 1.350584 0.05 0.958 -2.577436 2.720293 QTR337 | -1.444444 1.144375 -1.26 0.207 -3.688877 .7999876 QTR338 | 7.06e-15 1.213793 0.00 1.000 -2.38058 2.38058 QTR339 | -.5714286 1.173723 -0.49 0.626 -2.87342 1.730562 QTR340 | 1.432692 1.090856 1.31 0.189 -.7067752 3.57216 QTR341 | -1.69697 1.232046 -1.38 0.169 -4.11335 .7194102 QTR342 | -.025 1.383937 -0.02 0.986 -2.739278 2.689278 QTR343 | -.35 1.151505 -0.30 0.761 -2.608416 1.908416 QTR344 | -1.5 .9175412 -1.63 0.102 -3.299549 .2995491 QTR345 | 1.25 1.051176 1.19 0.235 -.8116425 3.311643 QTR346 | .6558442 .9781022 0.67 0.503 -1.262482 2.57417 QTR347 | 1.238095 .7491693 1.65 0.099 -.2312305 2.707421 QTR348 | -.3928571 .7007837 -0.56 0.575 -1.767285 .9815712 QTR349 | .9431034 .7056001 1.34 0.182 -.4407712 2.326978 QTR350 | .1829574 .7686315 0.24 0.812 -1.324539 1.690454 QTR351 | -.5772727 .7500201 -0.77 0.442 -2.048267 .8937217 QTR352 | .5833333 .6871749 0.85 0.396 -.7644045 1.931071 QTR353 | -.1785714 .6679801 -0.27 0.789 -1.488663 1.13152 QTR354 | -.3909091 .6443608 -0.61 0.544 -1.654677 .8728586 QTR355 | -.8377778 .7504168 -1.12 0.264 -2.30955 .6339948 QTR356 | -.6129032 .6166074 -0.99 0.320 -1.822239 .5964325 QTR357 | .0946292 .6554033 0.14 0.885 -1.190796 1.380054 QTR358 | .5624123 .6680773 0.84 0.400 -.7478699 1.872695 QTR430 | 1.6 1.421449 1.13 0.260 -1.18785 4.38785 QTR431 | .0555556 1.27945 0.04 0.965 -2.453796 2.564907 QTR432 | .5444444 1.115399 0.49 0.626 -1.643157 2.732046 QTR433 | -3.321678 .994517 -3.34 0.001 -5.272198 -1.371159 QTR434 | -3.267857 1.256395 -2.60 0.009 -5.731991 -.803723 QTR435 | 1.025974 1.173723 0.87 0.382 -1.276017 3.327965 QTR436 | -1.678571 1.52157 -1.10 0.270 -4.662786 1.305643 QTR437 | -.8888889 1.144375 -0.78 0.437 -3.133321 1.355543 QTR438 | 1.041667 1.311046 0.79 0.427 -1.529653 3.612987 QTR439 | -1 1.232046 -0.81 0.417 -3.41638 1.41638 QTR440 | 1.375 1.486587 0.92 0.355 -1.540603 4.290603 QTR441 | -1.205742 .9197337 -1.31 0.190 -3.009591 .5981075 QTR442 | .3777778 1.354043 0.28 0.780 -2.27787 3.033426 QTR443 | -1.138889 1.179595 -0.97 0.334 -3.452397 1.174619 QTR444 | -1.3125 .8884055 -1.48 0.140 -3.054906 .4299059 QTR445 | 1.833333 1.031526 1.78 0.076 -.1897704 3.856437 QTR446 | .3035714 .8163883 0.37 0.710 -1.297589 1.904732 QTR447 | .8154762 .8055747 1.01 0.312 -.764476 2.395428 QTR448 | .4596273 .732702 0.63 0.531 -.9774016 1.896656 QTR449 | .51 .7282758 0.70 0.484 -.9183478 1.938348 QTR450 | .0662526 .732702 0.09 0.928 -1.370776 1.503281 QTR451 | -1.475 .8142371 -1.81 0.070 -3.071941 .1219414 QTR452 | 1.595238 .7122414 2.24 0.025 .198338 2.992138 QTR453 | -.2916667 .6937405 -0.42 0.674 -1.652281 1.068948 QTR454 | -.6909091 .6814034 -1.01 0.311 -2.027327 .6455093 QTR455 | -1.305556 .7007837 -1.86 0.063 -2.679984 .0688728 QTR456 | -.7050691 .6329082 -1.11 0.265 -1.946375 .5362369 QTR457 | .0455408 .6028524 0.08 0.940 -1.136817 1.227899 QTR458 | .5735786 .6948996 0.83 0.409 -.7893094 1.936467 _cons | 5.374223 7.5253 0.71 0.475 -9.384946 20.13339 ------------------------------------------------------------------------------ . predict double yhat, xb . reg loghrearn yhat age agesq YR*, robust note: YR42 omitted because of collinearity note: YR58 omitted because of collinearity Linear regression Number of obs = 1930 F( 30, 1899) = 8.18 Prob > F = 0.0000 R-squared = 0.1052 Root MSE = .45641 ------------------------------------------------------------------------------ | Robust loghrearn | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- yhat | .0775439 .0191366 4.05 0.000 .040013 .1150748 age | .0694072 .0339128 2.05 0.041 .0028969 .1359176 agesq | -.0007319 .0004448 -1.65 0.100 -.0016041 .0001404 YR30 | .0824261 .1079102 0.76 0.445 -.1292089 .2940611 YR31 | .0952839 .1039415 0.92 0.359 -.1085676 .2991354 YR32 | .1236817 .1023798 1.21 0.227 -.077107 .3244704 YR33 | .175574 .0965876 1.82 0.069 -.013855 .3650029 YR34 | -.0632905 .0979068 -0.65 0.518 -.2553067 .1287257 YR35 | -.0438676 .1320984 -0.33 0.740 -.3029407 .2152056 YR36 | .0731311 .119703 0.61 0.541 -.1616321 .3078943 YR37 | .0471875 .1099594 0.43 0.668 -.1684665 .2628415 YR38 | -.0635212 .119788 -0.53 0.596 -.298451 .1714086 YR39 | .0960618 .1044298 0.92 0.358 -.1087474 .300871 YR40 | .0544622 .1014802 0.54 0.592 -.1445622 .2534866 YR41 | .058472 .1090039 0.54 0.592 -.155308 .2722521 YR42 | (omitted) YR43 | .1284498 .1235006 1.04 0.298 -.1137613 .370661 YR44 | .0805562 .1001809 0.80 0.421 -.1159199 .2770324 YR45 | .0729855 .1031693 0.71 0.479 -.1293516 .2753226 YR46 | .005405 .0995799 0.05 0.957 -.1898925 .2007024 YR47 | .0235223 .0874715 0.27 0.788 -.1480281 .1950727 YR48 | .0696297 .0827435 0.84 0.400 -.0926481 .2319075 YR49 | -.0389337 .0825409 -0.47 0.637 -.2008141 .1229468 YR50 | -.0205674 .0861564 -0.24 0.811 -.1895386 .1484038 YR51 | .0665797 .08236 0.81 0.419 -.0949458 .2281053 YR52 | .0173513 .0697737 0.25 0.804 -.1194899 .1541924 YR53 | .0589519 .0642448 0.92 0.359 -.0670459 .1849496 YR54 | -.0063706 .0611902 -0.10 0.917 -.1263777 .1136365 YR55 | .008917 .057011 0.16 0.876 -.1028937 .1207278 YR56 | -.0387302 .0522458 -0.74 0.459 -.1411954 .0637349 YR57 | .0094559 .0524493 0.18 0.857 -.0934085 .1123202 YR58 | (omitted) _cons | -.255431 .5957228 -0.43 0.668 -1.423771 .9129089 ------------------------------------------------------------------------------ * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/