Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

st: intreg cluster vs tobit cluster (one reports some missing std errors, the other doesn't)


From   Leandro Brufman <[email protected]>
To   [email protected]
Subject   st: intreg cluster vs tobit cluster (one reports some missing std errors, the other doesn't)
Date   Thu, 4 Nov 2010 20:18:02 -0400

Hi everyone!
I was running a Tobit model with clustered errors using -intreg
varlist, clustered(clustervar)- as detailed in here
(http://www.stata.com/support/faqs/stat/tobit.html). Sometimes the
standard errors of a couple of coefficients appeared as missing. After
reading a lot of useful things here in Statalist I couldn't find the
problem behind those results (for example, I never had 1 observation
per cluster, which was pointed out as a possible problem by Mark
Schaefer, I fixed a scale problem in one variable that was driving a
couple of missing std errors, but not all of them, etc.).

Just by chance I found one article of Woolridge (2006)
(https://www.msu.edu/~ec/faculty/wooldridge/current%20research/clus1aea.pdf)
At the end it says that you can run tobit with clustered errors by
typing -tobit varlist, ll(0) cluster(clustervar)-
I was just curious about that (I thought that tobit didn't allow
cluster option). I run it and guess what.... the missing std errors
dissapeared!

Below you'll see the results. Any ideas of why is this happening????

*********** BEGIN EXAMPLE **************************

. intreg amt_mt2 amt_mt3 ip_vsam_ipolate_w cridum ccc*, cluster(cricode)

Fitting constant-only model:

Iteration 0:   log pseudolikelihood = -8848.0525
Iteration 1:   log pseudolikelihood =  -1547.301
Iteration 2:   log pseudolikelihood = -1425.1908
Iteration 3:   log pseudolikelihood = -1407.5083
Iteration 4:   log pseudolikelihood = -1407.1085
Iteration 5:   log pseudolikelihood = -1407.1083
Iteration 6:   log pseudolikelihood = -1407.1083

Fitting full model:

Iteration 0:   log pseudolikelihood = -8834.4116
Iteration 1:   log pseudolikelihood = -1526.3341
Iteration 2:   log pseudolikelihood = -1366.9358
Iteration 3:   log pseudolikelihood = -1332.2446
Iteration 4:   log pseudolikelihood = -1331.6778
Iteration 5:   log pseudolikelihood = -1331.6745
Iteration 6:   log pseudolikelihood = -1331.6745

Interval regression                               Number of obs   =       6757
                                                  Wald chi2(11)   =     996.00
Log pseudolikelihood = -1331.6745                 Prob > chi2     =     0.0000

                               (Std. Err. adjusted for 21 clusters in cricode)
------------------------------------------------------------------------------
             |               Robust
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
ip_vsam_ip~w |  -.0263045          .        .       .            .           .
      cridum |  -156.2131    50.9088    -3.07   0.002    -255.9925   -56.43371
        ccc1 |   219.9064   70.44264     3.12   0.002     81.84139    357.9715
        ccc2 |   442.6939   147.2167     3.01   0.003     154.1545    731.2333
        ccc3 |   97.37137   32.76476     2.97   0.003     33.15362    161.5891
        ccc4 |   555.3243    185.262     3.00   0.003     192.2175    918.4311
        ccc5 |   421.7124   142.3647     2.96   0.003     142.6827    700.7422
        ccc6 |    269.146   87.67189     3.07   0.002     97.31224    440.9797
        ccc8 |    96.5494   37.97573     2.54   0.011     22.11834    170.9804
        ccc9 |   36.67169   13.64486     2.69   0.007     9.928247    63.41513
       ccc10 |   179.9544   60.99526     2.95   0.003     60.40586    299.5029
       ccc11 |   58.70021   28.58481     2.05   0.040      2.67502    114.7254
       _cons |  -300.8123   94.71781    -3.18   0.001    -486.4558   -115.1688
-------------+----------------------------------------------------------------
    /lnsigma |   4.989588   .3018269    16.53   0.000     4.398018    5.581157
-------------+----------------------------------------------------------------
       sigma |   146.8758   44.33108                      81.28957    265.3786
------------------------------------------------------------------------------

  Observation summary:      6613  left-censored observations
                             144     uncensored observations
                               0 right-censored observations
                               0       interval observations

. tobit amt_mt3 ip_vsam_ipolate_w cridum ccc*, ll(0) cluster(cricode)
note: ccc7 dropped because of collinearity

Tobit regression                                  Number of obs   =       6757
                                                  F(  12,   6745) =     287.30
                                                  Prob > F        =     0.0000
Log pseudolikelihood = -1331.6745                 Pseudo R2       =     0.0536

                               (Std. Err. adjusted for 21 clusters in cricode)
------------------------------------------------------------------------------
             |               Robust
     amt_mt3 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
ip_vsam_ip~w |  -.0263045   .0088692    -2.97   0.003     -.043691    -.008918
      cridum |  -156.2131    50.9064    -3.07   0.002    -256.0057   -56.42051
        ccc1 |   219.9064   70.44073     3.12   0.002     81.82035    357.9925
        ccc2 |   442.6939   147.2129     3.01   0.003     154.1102    731.2777
        ccc3 |   97.37137   32.76389     2.97   0.003      33.1438    161.5989
        ccc4 |   555.3243   185.2573     3.00   0.003     192.1616     918.487
        ccc5 |   421.7124   142.3617     2.96   0.003     142.6385    700.7864
        ccc6 |    269.146   87.66958     3.07   0.002     97.28593     441.006
        ccc8 |    96.5494   37.97516     2.54   0.011     22.10609    170.9927
        ccc9 |   36.67169   13.64448     2.69   0.007     9.924197    63.41918
       ccc10 |   179.9544   60.99367     2.95   0.003     60.38752    299.5212
       ccc11 |   58.70021   28.58445     2.05   0.040     2.665667    114.7348
       _cons |  -300.8123   94.71551    -3.18   0.002    -486.4846     -115.14
-------------+----------------------------------------------------------------
      /sigma |   146.8758   44.33002                      59.97501    233.7767
------------------------------------------------------------------------------
  Obs. summary:       6613  left-censored observations at amt_mt3<=0
                       144     uncensored observations
                         0 right-censored observations


. compare amt_mt2 amt_mt3 // just to show you that the vars are ok,
amt_mt2 is missing whenever amt_mt3==0, and both are equal otherwise.

                                        ---------- difference ----------
                            count       minimum      average     maximum
------------------------------------------------------------------------
amt_mt2=amt_mt3               152
                       ----------
jointly defined               152             0            0           0
amt_mt2 missing only         6639
                       ----------
total                        6791

.
*************** END EXAMPLE ********************************
*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index